Personalised Medicine in Cardiovascular Disease

What is personalised medicine?

"Stratified medicine is based on identifying subgroups of patients with distinct mechanisms of disease, or particular responses to treatments. This allows us to identify and develop treatments that are effective for particular groups of patients. Ultimately stratified medicine will ensure that the right patient gets the right treatment at the right time."

http://www.mrc.ac.uk/research/initiatives/stratified-medicine/

foundation making science work for health

The personalised medicine technology landscape

Microbiome analysis	Epigenomics	3D imaging and printing	Consumer m-health apps	Wearables and sensors
Metabolomics	Proteomics	Genome editing /therapy	Implantable biosensors	Point of care testing devices
ctDNA	Single cell 'omics	Stem cell therapy	EPR dependent technologies	Microfluidics
Pathogen Genomics	Transcriptomics	Robotics	Internet of things	Synthetic biology
Genomics	Pharmaco- genomics	Virtual and augmented reality	Machine learning	Nanomedicine

Technologies for greater molecular level characterisation
Technologies for personalised therapeutic interventions
Technologies for personalised disease and health monitoring
Underpinning and enabling technologies

A Debate: Argument in Support of Personalized and Digital Medicine is the Answer

Nov 20, 2017 | Dr. Robert Roberts, MD, MACC

AHA: Gene Test Predicts Who Won't Benefit From Blood Thinner Plavix

By the American Heart Association

EDITORIAL

nature medicine

Taking personalized medicine to heart

Tailoring treatment to the individual patient has revolutionized cancer therapy, but personalized medicine has yet to make much headway in the treatment of cardiovascular disease. With emerging insight into disease mechanisms and new treatment options, the time is now ripe for the cardiovascular field to adopt a more personalized approach to therapy.

NATURE MEDICINE VOLUME 24 | NUMBER 2 | FEBRUARY 2018

Precision Medicine: A Second Opinion

Nov 20, 2017 | Michael J Joyner, MD

Expert Analysis

the relative risks associated with a given variant are small, with values of 1.5 or less, and they explain a tiny fraction of the phenotypic variance.

...the oculogenomic rhyme is just starting?

Figure 1.4a Age-standardized death rates from CHD, men aged under 65, latest available year, Europe

Figure 1.2a Deaths under 75 by cause, men, latest available year, Europe

Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study

Salim Yusuf, Steven Hawken, Stephanie Ôunpuu, Tony Dans, Alvaro Avezum, Fernando Lanas, Matthew McQueen, Andrzej Budaj, Prem Pais, John Varigos, Liu Lisheng, on behalf of the INTER-EART Study Investigators*

9 risk factors accounted for 90% of the PAR in men and

94% in women.

Risk factor	Sex	Control (%)	Case (%)	Odds ratio (99% CI)	PAR (99% CI)
Current smoking	F	9.3	20.1	2.86 (2.36-3.48)	15.8% (12.9–19.3)
	м	33.0	53·1	3.05 (2.78–3.33)	44.0% (40.9–47.2)
Diabetes	F	7.9	25.5	4.26 (3.51-5.18)	19·1% (16·8–21·7)
	м	7.4	16.2	2.67 (2.36–3.02)	10·1% (8·9–11·4)
Hypertension	F	28.3	53.0	2.95 (2.57-3.39)	35-8% (32-1-39-6)
	м	19.7	34.6	2·32 (2·12–2·53)	19·5% (17·7–21·5)
Abdominal	F	33.3	45.6	2.26 (1.90-2.68)	35.9% (28.9–43.6) —
obesity	м	33-3	46.5	2·24 (2·03–2·47)	32·1% (28·0-36·5)
Psychosocial index	F	-	-	3.49 (2.41-5.04)	40.0% (28.6–52.6)
	м	-	-	2.58 (2.11-3.14)	25·3% (18·2-34·0)
Fruits/veg	F	50-3	39.4	0.58 (0.48-0.71)	17.8% (12.9–24.1)
	м	39.6	34.7	0.74 (0.66–0.83)	10·3% (6·9–15·2)
Exercise	F	16.5	9.3	0.48 (0.39–0.59)	37·3% (26·1-50·0)
	м	20.3	15.8	0.77 (0.69–0.85)	22.9% (16.9–30.2)
Alcohol	F	11.2	6-3	0.41 (0.32-0.53)	46.9% (34.3-60.0)
	м	29.1	29.6	0.88 (0.81–0.96)	10.5% (6.1–17.5)
ApoB/ApoA1 ratio	F	14.1	27.0	4.42 (3.43-5.70)	52·1% (44·0-60·2)
	м	21.9	35.5	3.76 (3.23-4.38)	53·8% (48·3-59·2)
					Odds ratio (99% CI)

Lancet 2004; 364: 937-52

Figure 4: Association of risk factors with acute myocardial infarction in men and women after adjustment for age, sex, and geographic region For this and subsequent figures, the odds ratios are plotted on a doubling scale. Prevalence cannot be calculated for psychosocial factors because it is derived from a model.

Eugene Braunwald MD

Professor, Harvard Medical School and Chairman, TIMI Study Group

- 1. Electrocardiography
- 2. Cardiac catheterisation
- 3. Cardiovascular surgery
- 4. Coronary angiography
- 5. Invasive cardiology
- 6. The Coronary Care Unit
- 7. Cardiovascular Drugs
- 8. Preventative Cardiology
- 9. Echocardiography
- 10. Pacemakers & ICDs

Blue line = all cardiovascular disease; red line = coronary heart disease; and green line = stroke. ICD = International Classification of Diseases. Source: National Institutes of Health, National Heart, Lung and Blood Institute. Morbidity and Mortality: 2012 Chart Book on Cardiovascular, Lung, and Blood Diseases. Available at: http://www.nhlbi.nih.gov/resources/docs/2012_ChartBook_508.pdf.

Spectrum of Genetic Disease

Inherited Arrhythmia Syndromes

Wilde & Amin. International Journal of Cardiology 237 (2017) 53–55

Long-Term Arrhythmic and Nonarrhythmic Outcomes of Lamin A/C Mutation Carriers

Saurabh Kumar, BSc(MED)/MBBS, PhD,^a Samuel H. Baldinger, MD,^b Estelle Gandjbakhch, MD, PhD,^c Philippe Maury, MD,^d Jean-Marc Sellal, MD,^{e,f,g,h} Alexander F.A. Androulakis, MD,¹ Xavier Waintraub, MD,^c Philippe Charron, PhD,^{e,f,k} Anne Rollin, MD,^d Pascale Richard, PhD,¹ William G. Stevenson, MD,^a Ciorsti J. Macintyre, MD,^a Carolyn Y. Ho, MD,^a Tina Thompson, RN,^m Jitendra K. Vohra, MD,ⁿ Jonathan M. Kalman, MBBS, PhD,ⁿ Katja Zeppenfeld, MD,¹ Frederic Sacher, MD,^{e,f,g} Usha B. Tedrow, MD, MSc,^a Neal K. Lakdawala, MD^a

122 patients with LMNA mutations from 87 families; genetic diagnosis 1998-2015:

J Am Coll Cardiol 2016;68:2299-3

P4981 Phase 2 Study of A797, an Oral, Selective p38 Mitogen-Activated Protein Kinase Inhibitor, in Patients With *Lamin A/C*–Related Dilated Cardiomyopathy

Calum A. MacRae,¹ Matthew R. G. Taylor,² Luisa Mestroni,² John R. Moses,³ Euan A. Ashley,⁴ Matthew T. Wheeler,⁴ Neal K. Lakdawala,¹ Ray E. Hershberger,³ Mieke Ptaszynski,⁶ Victor Sandor,⁶ Michael E. Saunders,⁶ Colleen Oliver,⁶ Patrice A. Lee,⁶ Daniel P. Judge²

⁶MWT=6-minute walk test; BL=baseline; LVEF=left ventricular ejection fraction; NT-proBNP=N-terminal pro-brain natriuretic peptide. "For these analyses, the aggregated mean changes from baseline for all time points for the efficacy endpoints (6MWT, NT-proBNP, and LVEF) by patient and dose were determined.

∧RR**∧**Y

6MWT=6-minute walk test; BL=baseline; BL-1=day -1 (1 day before BL); S=screening; SF=screen fail. *3 patients who failed screening were allowed to rescreen for this study. Their data are represented above in the "SF" group.

AORTA, February 2017, Volume 5, Is

Defesche, J. C. *et al.* (2017) Familial hypercholesterolaemia *Nat. Rev. Dis. Primers* doi:10.1038/nrdp.2017.93

Monoclonal Antibody Blocking Plasma PCSK9

siRNA Blocking PCSK9 Transcription

European Heart Journal (2016) **37**, 2129–2200 doi:10.1093/eurheartj/ehw128 **ESC GUIDELINES**

2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)

Developed with the special contribution of the Heart Failure Association (HFA) of the ESC

HEART FAILURE

HF is a clinical syndrome characterized by typical symptoms (e.g. breathlessness, ankle swelling and fatigue) that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary crackles and peripheral oedema) caused by a structural and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or elevated intracardiac pressures at rest or during stress

2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)

Developed with the special contribution of the Heart Failure Association (HFA) of the ESC

"The main terminology used to describe HF is historical and is based on measurement of the LVEF"

Type of HF		HFrEF HFmrEF		HFpEF	
I		Symptoms ± Signs ^a	Symptoms ± Signs ^a	Symptoms ± Signs ^a	
NA	2	LVEF <40%	LVEF 40-49%	LVEF ≥50%	
CRITER 3		-	 Elevated levels of natriuretic peptides^b; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2). 	 Elevated levels of natriuretic peptides^b; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2). 	

European Heart Journal (2016) **37**, 2129–2200 doi:10.1093/eurheartj/ehw128 ESC GUIDELINES

2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)

Developed with the special contribution of the Heart Failure Association (HFA) of the ESC

2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)

Developed with the special contribution of the Heart Failure Association (HFA) of the ESC

Where is all the cardiomyopathy?

- In clinical practice, a clear distinction between acquired and inherited cardiomyopathies remains challenging.
- In most patients with a definite clinical diagnosis of HF, there is no confirmatory role for routine genetic testing...

Case One

- Male age 49 years
- DCM in 2016 breathlessness, tiredness

PMH:

- bilateral operation for varicose veins in both legs
- Spinal fusion surgery 2015

Social history

- Chef, drinks 1 beer after work, 1 bottle of wine+2 beers during the weekend
- Ex-smoker (15 years)

Investigations

- Echo/CMR: Dilated LV, EF 35%, myocardial scar
- Holter: 13337 PVCs, 320 couplets, 6 triplets, 1 SVT 5 beats

Case Two

- 38 year old woman
- Hypertension
- Presented with cellulitis in UK and then referred on to cardiology due to low heart rate
- Tubal ligation in India abandoned after 2:1 heart block
- Asymptomatic no syncope or shortness of breath
- Ramipril 5mg, Amlodipine 5mg
- Systems enquiry unremarkable. Routine bloods normal.

Case 3

49y Afro-Caribbean male

Past Medical History

• Alpha Thalassaemia Trait

Family history

• Nil

Social history

- Ex-smoker of 40 cigarettes per day up to 2002
- Up to 8 Units per night up to 5 years ago

Case 3

March 2008: Investigated for dyspnoea

Diagnosis:

- Hypertension
- Asthma

October 2008:

Presented to A&E following an episode of syncope

Case 4:

72 year old male

Previous CABG & AVR

New onset AF

Management

CASE ONE (DCM)

• Ramipril 5 mg bd, bisoprolol 3.75 mg, spironolactone 25 mg, furosemide 40 mg

CASE TWO (HCM, AV block)

Pacemaker

CASE THREE (normal LV, AV block) Pacemaker

CASE FOUR (AF, mild LVH, diastolic dysfunction) HFPeF: DCCV, Anticoagulate, Manage risk factors

ESC Guidelines

Anti-intellectualism in Clinical Cardiovascular Medicine

... concern with understanding clinical syndromes has been replaced by formulae for their treatment.

J Cohn. Journal of Cardiac Failure Vol. 6 No. 4 2000

Clinical Cardiology:

What about the cases?

Case 1

First days of November 2016 collapsed while walking in Paris-chest compressions from a bystander->ICD implantation.

DCM Ventricular ectopy Posterior wall scar

DSG2 mutation

HCM, conduction disease, pre-excitation

Mutation in PRKAG2

AV block, abnormal chest X-ray

Sarcoidosis

72 year old male

Proteinuria

Bilateral carpal tunnel syndrome

TTR AMYLOIDOSIS

Management

CASE ONE (Arrhythmogenic cardiomyopathy)

High risk genetic mutation. Low threshold for ICD. Family screening
 CASE TWO (PRKAG2)

• Family screening

CASE THREE (Sarcoidosis)

- Immunosuppressive therapy
 CASE FOUR (TTR amyloidosis)
- TTR stabiliser

Frontiers: New Partnerships

Frontiers: New Workforce

Frontiers: New Armoury

- ß-blockers
- RAAS inhibitors
- Statins
- Vasodilators
- Antiplatelets
- Anticoagulants
- Devices

Anti-intellectualism in Clinical Cardiovascular Medicine

... it should not be necessary for us to sacrifice the traditional value of a better understanding of the diseases we are asked to treat

J Cohn. Journal of Cardiac Failure Vol. 6 No. 4 2000

Treatment Spotlight: Personalized Medicine

