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Obesity is a threat for health and economy
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Overweight, body mass index (BMI) 225 kg/m?; obese, BMI >28 kg/m? (Asian) or >30 kg/m?.
James WP. J Intern Med. 2008;263(4).336-352.
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Obesity is a threat for health and economy

B 2.8 million deaths per year in the EU result from causes associated
with overweight and obesity

(Source: European Association for the Study of Obesity, easo.org)
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Current Public health actions
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Big () ) Big Data Agains Childhood Obesity
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Big () ) Big Data Agains Childhood Obesity

B Allow evidence based, pre-assessed, more effective policy choices,
all the way from the prevention front to the point-of-care level for
already obese individuals

M Teach young European citizens about the principles of Voluntarism,
Citizen Science and Public Participation

M Increasing the awareness about healthy living, introducing students
to the health-in-all-things mentality
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Need of multi-level approaches
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Causality hierarchy

BigO policy planner

BigO policy advisor

Policies

BigO clinical advisor

Anastasios Delopoulos

Local Extrinsic Conditions

(LECs) = The environment
— Urban

AVIOUR — Social

— Financial

— Regulatory

Personal Behavioural
Patterns
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Causality hierarchy

Personal Behavioural
Big0 policy planner [ poicies ot Patterns = our habits

BigO policy advisor — The multiplicity of them

Behavioural Risk Factors

BigO clinical advisor
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Causality hierarchy

BigO policy planner Policies

BigO policy advisor

BigO clinical advisor

Anastasios Delopoulos

Behavioural Risk Factors =

ONDITIO A structured profile
— How one eats
AVIOURA — What one eats
— How one sleeps
AVIOUR? — How one moves

Child BMI
or
Obesity Prevalence

Smart Statistics 4 Smart Cities, Kalamata, GR Oct 4-5, 2018



Multimedia Understanding Group, Aristotle University of Thessaloniki, Greece

BigO = extract evidence, locally !

M Aetiology
—>Why bad habits are being adopted
—>Not in general! Here, at a local level

MPrediction
—>What is the effect of an adopted policy

o Estimate it before it is adopted
o Quantitatively
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Aetiology: the “Policy Advisor”

W\What makes the population of a
specific neighborhood of Athens
scarcely use public means of
transportation?

—An easy one

M\\Vhat makes the population of a

Local Extrinsic Conditions
(LECs) = The environment

— Urban
— Social
— Financial

— Regulatory

specific neighborhood of Dublin
exercise less than average?
—>More interesting

B\Vhy students at IEGS eat their lunch

too fast?

Personal Behavioural
Patterns
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Prediction: the “Policy Planner”

B What is the effect of adding a bus
line to the use of public means of
transportation from the
population of a specific
neighborhood of Athens?

—>Not that easy to quantify

B What is the effect of reducing the
availability of high sugar
sweetened beverages in metro
stations to the calorie intake of
students?
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(LECs) = The environment

— Urban
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— Financial
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Patterns
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Big Data is the key!

M Large-scale data
— behavioural patterns
— local environment variables

M Statistically significant associations
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Which big data

B Thousands of children

—Schools
—Clinics

M Behavioural data
—Personal Behavioural Patterns
—Behavioural Risk Factors

B Local Environment Conditions from relevant areas
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Citizen-scientist model

B Primary incentives
— Offer my data for my neighborhood
— Be a scientist

—> Participatory design paradigm

B Part of school courses/projects

- Need the support of school teachers / administration

— Produce material easy to integrate in school classes

— Math, Physical Education, Physics, Social Education, ...

Anastasios Delopoulos Smart Statistics 4 Smart Cities, Kalamata, GR Oct 4-5, 2018



Multimedia Understanding Group, Aristotle University of Thessaloniki, Greece

BigO Community

Reaching out to more than
23.000 school children to
become BigO citizen scientists
and share their behavioural
data

Engage ~7.000

Engaging more than 2.000
children at 3 obesity clinics
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BigO Data collection

Physical Activity

BIG DATA AGAINST
CHILDHOOD OBESITY

Barcode Scanning — Food

Zzz
S/am ()

Self-reporting
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The BigO System

; Public Health
Officials

Children Healthcare
e BigO Cloud professionals
Storage +
A Analytics
0 Platform
G

e
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Measuring behavior: Devices + Apps

Use smartphones/smartwatches to measure accelerometry + position
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Measures of behavior:
Activity Counts & Steps
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Measures of behavior: Activity Counts
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Measures of behavior:
Activity Type Classification

M Decide Activity Type per minute
—>Walking, running, bicycling, sitting, standing, etc

M 3D Accelerometer recordings at 10 up to 100 Hz
M Smartphone or Smartwatch

M Signal processing + machine learning
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Measures of behavior:
Determining “Lifespace

77

B Determine Points of Interest
visited
—Home

—Frequently visited locations
—Public POls

B GPS recordings per minute
B Smartphone or Smartwatch

B Cluster locations
—DBSCAN
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Measures of behavior:
Determining “Lifespace Graph”

M Derive the graph of lifespace
—Places visited

—>How and when ones moves from
node-to-node

M Add labels to places

—>Restaurant/Fast food/Bus
station/School/Gym/....

—>Access Google/Foursquare for this
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Measures of behavior:
Food type and quantity

M Determine the type of food

B Quantify food
—>Volume
—~>Main ingredients

M Pictures

M 3D computer vision
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Measures of behavior:
Analyze meal microstructure

M Detect bites during meals
M|n the wild

BSmartwatch captures
accelerometry + gyroscope data

MSignal Processing + Deep
Learning
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Measures of behavior:
Analyze meal microstructure

Inertial Data Convolutional Network Recurrent Network
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Measures of behavior:
Analyze sleep

M Sleep Duration, Fragmentation,
Efficiency, ...

B Smartwatch
M 3D accelerometer + HRV sensor

M |n the wild

M Signal Processing + Deep
Learning
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Eating activity indicators (indicative)

Name Units Sensors involved
(Location,  Accelerometer,
Photo, User answers)

Eating fast food /outside Occurrence L,PU

Fast-food eating frequency Times/week L,P U

Eating dinner outside of the home? Occurrence L,PU

Eating at home Occurrence L,PU

Food type Categorical u,P

Meal type (breakfast, lunch, dinner, snack) Categorical L,PU

Meal frequency (e.g., breakfast) Occurrence u,P

Soda or fizzy drinks (sugar added) Occurrence u,P

Diet soda/Juice/water/milk Occurrence u,P

Eating occurrences Occurrence U

Eating/snacking frequency times/day U

Eating late at night Times/week U

Eating schedule adherence sec (std) U
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Physical activity - Sleep indicators (indicative)

Name Units

Sensors involved

(Location ) Accelerometer,

Photo, User answers)

Energy expenditure (at minute intervals) Categorical A
Activity type (minute) Categorical A
Activity intensity Categorical A
Activity level Categorical A
Steps Integer A
Activity counts Counts/minute A
Exercise frequency Times/week A
Frequency of 10 min bouts of consecutive mod-vigorus Times/week A
activity

Hours of sleep per night Hours AU
Sleep/wake-up times per night Timestamp A
Interruptions of sleep Number A
Duration of each interruption Minutes A
Movement during sleep Categorical A
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Measuring Environment: External Sources

B Maps

—Incl. Google, Foursquare

W Statistical Authorities
— Finest spatial scale
— Microdata (?)
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Measuring Environment: Deep Learning

B Example: Image processing +
deep learning on Google Street
View: infer unemployment from
car images

M Deep Multiple Instance learning
— Inexpensive
— Good accuracy

— Uses statistics of coarse spatial
resolution during learning

— Yields fine spatial resolution
predictions
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Estimates of local conditions:
unemployment

(a) Acquisition

Google Street View
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Upper left '
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(b) Car detection (c) Multiple instance learning

Faster RCNN
Inception V3

Parked car images - Top-20%
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Diou, C.; Lelekas, P.; Delopoulos, A. Inage-Based Surrogates of Socio-
Economic Status in Urban Neighborhoods Using Deep Multiple Instance
Learning. Preprints 2018, 2018080154 (doi:
10.20944/preprints201808.0154.v1)
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(d) Surrogate variable
& estimation of
local unemployment rate

Linear Regression (Top 20%)
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Estimates of local conditions:
unemployment
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Diou, C.; Lelekas, P.; Delopoulos, A. Inage-Based Surrogates of Socio-
Economic Status in Urban Neighborhoods Using Deep Multiple Instance
Learning. Preprints 2018, 2018080154 (doi:
10.20944/preprints201808.0154.v1)
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Local Environment Conditions (indicative)

BUILT ENVIRONMENT

Availability of indoor facilities

Number of indoor facilities

Density of indoor facilities

Price of indoor facilities

Availability of outdoor facilities

Number of outdoor facilities

Density of outdoor facilities

Price of outdoor facilities

Recreational space within walking space of distance of home
School infrastructure that includes spaces for organised or individual exercise/activity
Affordability of organised sports: club fees and costs
Numbers of people who use recreational spaces

Availability of open spaces in neighbourhood

Number of public parks

Density of public parks
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Local Environment Conditions (indicative)

DIETARY ENVIRONMENT

Density and type of food outlet in proximity to school

Density and type of food outlet in proximity to home

Density and type of food outlet along school commute

Tracking data on portion sizes in fast-food outlets, other restaurants and single-serving snacks
The pricing environment of foods

Range and diversity of food retail outlets

Number of fast food advertisements within the community
Advertisements in proximity of schools

% of processed food items with clear and accurate front of pack labelling
Food advertising at specific times

Digital exposure to food advertising

Availability of fresh fruit and vegetables

Retail environment within supermarkets

Density and type of food outlet in proximity to school

Density and type of food outlet in proximity to home

Anastasios Delopoulos Smart Statistics 4 Smart Cities, Kalamata, GR Oct 4-5, 2018



Multimedia Understanding Group, Aristotle University of Thessaloniki, Greece

Local Environment Conditions (indicative)

SOCIOECONOMIC ENVIRONMENT / HEALTH INEQUALITIES

Education level statistics

Employment status or socio-economic status of family
Local deprivation indices

Area based food poverty statistics

Number of households experiencing food poverty
Unemployment levels

Child and family — living on public assistance

Health literacy

Ethnicity

Gender

Family structure

Availability and access to universal primary health services
Availability and access to school meals schemes

Level of referrals

UNICEF deprivation index
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Privacy preservation

M Pseudonymization
— Real names out of the system

— Analytics on Geohashes not on
persons

Innovative handling of location

data

— votes to elements of {geohashes}
x {behaviors}

o Cecilia was walking fast on
Odengatan street of Stockholm at
9:15 am

o =2 increase votes(u6sce5, ‘walk fast’,

9) by one
— k-anonymity

o Cast the vote to all subareas of ubsce
if less than k votes

Anastasios Delopoulos
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Challenges

M Engagement

M Privacy

M Discreet operation
M Scalability

M Accuracy

M Validity
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Thank you
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