

Individualized management of urogenital tumors The impact of ACCC

Aristotle Bamias MD PhD MRCP Professor of Therapeutic Oncology National & Kapodistrian University of Athens

Individualized anti-cancer therapy

- One treatment FITS all
- Solid tumors = Polyclonal populations
- One treatment DOES NOT FIT all

Outcomes at 5 years after neoadjuvant chemotherapy and/or cystectomy in patients with muscle invasive bladder cancer*

data are derived from the Southwest Oncology Group (SWOG) trial 8710

MADRID ESVO

Griffiths G, Hall R, Sylvester R, et al. J Clin Oncol. 2011;29:2171-2177 Galsky MD, Domingo-Domenech J. Clin Adv Hematol Oncol 2013;11:86-92

Advantages of individualized anticancer therapy

- Increased efficacy
- Increased tolerance
- Avoidance of unnecessary toxicity
- Favorable pharmacoeconomics

Targeted therapies in urogenital cancer

VEGF/VEGFR targeting

- Sorafenib
- Sunitinib
- Bevacizumab
- Pazopanib
- Axitinib
- Cabozantinib
- Lenvatinib

mTOR inhibitors

• Everolimus

• Temsirolimus

Checkpoint inhibitors

- Nivolumab
- Pembrolizumab
- Atezolizumab
- Avelumab
- Durvalumab

mAb, monoclonal antibody; mTOR, mammalian target of rapamycin; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.

1. Sanchez-Gastaldo A, et al. Cancer Treat Rev. 2017;60:77-89.

Evolution in the first-line treatment of mRCC

Median survival before and after the introduction of targeted agents (TKIs)¹⁻¹¹

*With targeted agents as first-line mRCC therapy primarily in favourable/intermediate risk patients

Coppin *et al. Cochrane Database Syst Rev* 2005; 2. Gore *et al. Lancet* 2010; 3. Motzer *et al. N Engl J Med* 2007; 4. Escudier *et al. Lancet* 2007;
Rini *et al. J Clin Oncol* 2008; 6. Motzer *et al. N Engl J Med* 2013; 7. Motzer *et al. J Clin Oncol* 2009; 8. Escudier *et al. J Clin Oncol* 2010;
Rini *et al. J Clin Oncol* 2010; 10. Michel *et al.* ASCO GU 2014; 11. Motzer *et al.* ASCO 2013.

PD-1, programmed cell-death protein 1; PD-L1, programmed death-ligand 1; PD-L2, programmed death-ligand 2.

Ortega RMM, Drabkin HA. Exp Opin Biol Ther. 2015;15:1049-60.

PD-L1 Is Expressed in a Range of Tumor Types

Examples of Tumor Types with Strong PD-L1 Staining (≥10% of cells):

Reprinted from J Transl Med. 14:173. Sun WY, Lee KY, Koo JS, Expression of PD-L1 in triple-negative breast cancer based on different immunohistochemical antibodies, © Sun WY, Lee KY, Koo JS 2016.

Ovarian⁵

Adapted from Oncotarget 7(2) Darb-Esfahani S, et al. Prognostic impact of programmed cell death-1 (PD-1) PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infiltrating lymphocytes in ovarian high grade serous carcinoma, Pages 1486-1499, Copyright @ 2016 Impact Journals, LLC.

Lung Cancer³

SCCHN³

Melanoma⁴

Adapted by permission from Macmillan Publishers Ltd: Nature Rev Cancer Topalian SL, et al. Nat Rev Cancer. 2016; 16:275-287, copyright 2016.

1. Sun WY, et al. J Transl Med. 2016;14:173. 2. Massard C, et al. J Clin Oncol. 2016;34(suppl): Abstract 4502. 3. Rebelatto MC, et al. J Clin Oncol. 2016;34(suppl): Abstract 8033. 4. Topalian SL, et al. Nat Rev Cancer. 2016; 16:275-287. 5. Darb-Esfahani S, et al. Oncotarget. 2015;7:1486-1499.

CheckMate 214: Study Design

- **Co-primary endpoints**: ORR, PFS, and OS in patients with IMDC-defined poor-/intermediate--risk RCC
- Co-secondary endpoints: ORR, PFS, and OS in ITT patients; AE incidence rate

ITT, intention-to-treat; i.v., intravenous; KPS, Karnofsky performance status; ORR, overall response rate; p.o., orally; q2w, every 2 weeks; q3w, every 3 weeks.

Escudier B, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA5.

CheckMate 214: Exploratory Endpoint Antitumor Activity by Tumor PD-L1 Expression Level

		IMDC-defined poor/intermediate risk				IΠ			
		PD-L1 < 1%		PD-L1 ≥ 1%		PD-L1 < 1%		PD-L1 ≥ 1%	
	Outcome	NIVO + IPI n = 284	SUN n = 278	NIVO + IPI n = 100	SUN n = 114	NIVO + IPI n = 386	SUN n = 376	NIVO + IPI n = 113	SUN n = 127
RR	ORR,ª % (95% CI)	37 (32–43)	28 (23–34)	_58 (48–68)	22 (15–31)	36 (31–41)	35 (31–40)	53 (44–63)	22 (15–30)
		p = 0.0252		p < 0.0001		p = 0.8799		p < 0.0001	
OR	BOR,ª % CR	7	1	16	1	9	2	14	1

	PD-L1 < 1% (n = 562)	PD-L1 ≥ 1% (n = 214)				
	Median PFS, n	Median PFS, months (95% CI)				
NIVO + IPI	11.0 (8.1–14.9)	22.8 (9.4–NE)				
SUN	10.4 (7.5–13.8)	5.9 (4.4–7.1)				
	HR (95% CI) 1.00 (0.74–1.36) p = 0.9670	HR (95% CI) 0.48 (0.28–0.82) p = 0.0003				

PFS IMDC-defined poor/intermediate risk

^a IRRC assessed.

С

B

Escudier B, et al. Ann Oncol. 2017;28(Suppl 5): Abstract LBA5.

Combinations May Only Be Needed in PD-L1 Negative Tumors

- Addition of CTLA-4 inhibition may only lead to toxicity in pts with PD-L1-high tumors
- No data yet in bladder cancer

PDL1 Testing (IC 2/3 vs 1/2) Loses Ability to Enrich for Response Across Atezolizumab Studies

Phase I Data: Assays for Measurement of PD-L1 Expression in Advanced Urothelial Cancer

	Alezolizuniab	NIVOIUMAD	Pembrolizumab ³	Durvalumab⁴	Avelumab ⁵	
Detection antibody	SP142	28-8	22C3	SP263	73-10	
IHC platform	Ventana	Dako	Dako	Ventana	Dako	
Cell types scored for urothelial cancer	IC	TC	TC IC and TC		IC and TC	
Cut-off definitions for F urothelial cancer	PD-L1+ (IHC 2/3) as ≥5% of ICs PD-L1+	PD-L1+ ≥1% TC expression	PD-L1+ ≥1% TC staining	PD-L1+ as ≥25% of ICs and TCs with membrane PD-L1 staining	PD-L1+ as ≥5% TC staining or ≥10% IC staining	
Estimated PD-L1 prevalence in urothelial cancer trials	~32%1	~37%2	~62%3	~65%4	~36%5	
PD-L1+ ORR (phase I trials)	50.0	24.0	29.0	46.0	53.8	

1. Petrylak DP, et al. J Clin Oncol. 2015;33(suppl): Abstract 4501. 2. Sharma P, et al. J Clin Oncol. 2016;34(suppl): Abstract 4501. 3. Plimack ER, et al. J Clin Oncol. 2015;33(suppl): Abstract 4502. 4. Massard C, et al. J Clin Oncol. 2016;34(suppl): Abstract 4502. 5. Apolo AB, et al. J Clin Oncol. 2016;34(suppl): Abstract 4514.

Antigenicity Is a Major Component of Tumor Immunogenicity

Downregulation and disruption of antigen-presenting machinery reduces immunogenicity⁴

Alexandrov LB, et al. *Nature.* 2013;500:415-421. 2. Rizvi NA, et al. *Science.* 2015;348:124-128. 3. Rooney MS, et al. *Cell.* 2015;160:48-61.
Beatty GL, et al. *Clin Cancer Res.* 2015:21:687-692.

Molecular characterization of urothelial cancer

11 III IV mRNA subtypes Papillary histology а FGFR3 mut FGFR3 amp FGFR3 fusion FGFR3 mRNA miR-99a-5p miR-100-5p Squamous features b KRT5 mRNA KRT6A mRNA KRT14 mRNA EGFR mRNA EGFR protein С GATA3 mRNA GATA3 protein FOXA1 mRNA miR-200b-3p E-cadherin protein d ERBB2 mut ERBB2 amp ERBB2 mRNA ERBB2 protein ESR2 mRNA mRNA/miRNA/protein mut/amp/fusion Missing data Papillary/squamous -2 0 2

The Cancer Genome Atlas Research Network. Nature 2014; 507: 315-322

Gene Signatures in the Tumor Microenvironment

IMvigor210: TCGA Subtype in metastatic urothelial cancer

TIL, tumor-infiltrating lymphocyte. ^aHigh myeloid, inflammatory, activated stromal/fibroblast markers

Rosenberg JE, et al. Lancet. 2016;387(10031):1909-1920.

Response by TCGA Molecular Subtype

Atezolizumab 1st-line¹

Atezolizumab 2nd-line²

1. Balar AV et al. Lancet 2017; 389:67-76. 2. Rosenberg JE, et al. Lancet. 2016;387(10031):1909-1920.

Response by TCGA Molecular Subtype

Nivolumab 2nd-line¹

Molecular characterization of urothelial cancer

11 III IV mRNA subtypes Papillary histology a FGFR3 mut FGFR3 amp FGFR3 fusion FGFR3 mRNA mix-99a-5p miR-100-5p Squamous features b KRT5 mRNA KRT6A mRNA KRT14 mRNA EGFR mRNA EGFR protein С GATA3 mRNA GATA3 protein FOXA1 mRNA miR-200b-3p E-cadherin protein d ERBB2 mut ERBB2 amp ERBB2 mRNA ERBB2 protein ESR2 mRNA mRNA/miRNA/protein mut/amp/fusion Missing data Papillary/squamous -2 0 2

The Cancer Genome Atlas Research Network. Nature 2014; 507: 315-322

FGFR3 activation can occur by mutation, overexpression or gene fusion

di Martino et al. Advances in Urology 2012

FGFR

- FGF signaling promotes oncogenesis, tumor neoangiogenesis and drug resistance¹
- FGF signaling alterations, particularly those involved in FGFR3 and FGFR1 pathway, are implicated in bladder tumors²
 - Important molecular alteration in bladder cancer³

Significance in resistance to chemotherapy

1. Dieci et al., 2013; 2. di Martino et al., 2012 ; 3. http://dx.doi.org/10.1038/nature12965.

Soria et al: Safety and Activity of the Pan–Fibroblast Growth Factor Receptor (FGFR) Inhibitor Erdafitinib in Phase 1 Study Patients with Advanced Urothelial Carcinoma (UC)

Antitumor Efficacy

- Responses were obs and 10 mg intermitte 2016)
- No responses were noted in 36 patients with unknown or no known FGFR alterations.
- 11 PR out of 24 FGFR+ pts, ORR of 43.070 (95% CI 25.6%, 67.2%)
 - 9 mg QD: 7 PR of 11 pts, ORR of 63.6%

• 10 mg intermittent: 4 PR of 13 pts, ORR of 30.8%

- Median duration of response: 7.2 mo (1.6+ to 15.3 mo), (95% CI 3.3 to 15.3 mo)
- Median PFS: 5.1 mo (95% CI 2.8 to 5.9 mo)
 - 6-mo PFS of 24% and 12-mo PFS of 12%

of the sum of the diameters of targeted lesions

Metastatic urothelial cell carcinoma case study

Patient ongoing (9+ cycles) with PR (45% tumor reduction)

Left Lung Nodule

Mediastinal Mass

Images courtesy of Jason Luke, MD, and Geoff Shapiro, MD, Dana-Farber Cancer Institute

Response to everolimus on MSKCC IRB protocol 08-123.

- 73 year old women with metastatic bladder cancer with progression after platinum-based treatment.
- Achieved a complete response to everolimus (mTORC1 inhibitor) on MSKCC protocol 08-123.
- The patient remains on drug with no evidence of disease > 48 months after starting treatment.
- This patient was one of only 2 of 45 patients who responded to drug.

Why did this patient respond so dramatically to mTORC1 inhibition?

First Cancer Genome at MSKCC

- 17,000+ somatic mutations
- 140 NS coding mutations

Moving to personalized medicine

- Cancers emerge from genomic errors
- Sequencing technology is now at the bedside
- Clinical computational biology:
 - Computational algorithms to analyze and interpret genomic data from patient samples are available

How this translates to daily clinical practice ?

An opportunity for genomic "media"

- Can we visually represent an exome to enable clinical interpretation?
- Can we make complex genomic data approachable for busy clinicians (and patients)?
- Can we place these data in a useful portion of the medical record?
- Do we need to include expression analysis, mutational burden, nanostring when deciding for Immunotherapy?

Contents of a Report

Summary of genomic alterations and therapeutic implications

Note: Genomic alterations detected may be associated with activity of certain FDA approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type

based on genomic alterations identified

Clinical Interpretation Needs

Clinical Sequencing Pipeline Development

Clinical Genomics Data Interpretation

Data Representation for Clinicians

ĵ	DANA-FARBER BROAD WOMEN'S HOSPITAL
С	GEC Cancer Genome Report
+	Patient Information
+	Sequencing Metrics
+	Actionable Alterations
+	Somatic Mutations and Indels
+	Somatic Copy Number Alterations
+	Germline Analysis
+	Analysis and References

Genomic media in clinical cancer medicine

- ◆A field in its infancy
- Needs standardization
- Needs best practices
- Needs prospective testing in the clinic
- Needs regulatory evaluation

Impact of Athens Comprehensive Cancer Center (ACCC)

Athens Comprehensive Cancer Center (ACCC)

Responsible Scientist

1. National Hellenic Research Foundation (preclinical drug studies, bioinformatics)	Dr Alex Pintzas
2. Alexandra Hospital (University Clinics)(urogenital, leukaemias, gynaecological)	Prof. Aristotelis Bamias
3. Aghios Savas Hospital (Oncology Clinic) (breast, colorectal, lung, melanoma)	Dr George Koumakis
4. Pediatric Hospital Aghia Sofia (University Clinic) (pediatric cancers)	Assoc. Prof. Antonis Kattamis
5. Attikon Hospital (University Clinic) (head and neck cancer)	Ass. Prof. Amanda Psyrri
6. General Hospital of Athens G. Genimmatas (colorectal, thyroid, adrenal gland)	Dr George Zografos
7. National Center of Scientific Research Demokritos (hereditary cancer genetics)	Dr Drakoulis Yannoukakos
8. University of Athens -School of Chemistry (liquid biopsy, CTCs, ctDNA)	Prof Evi Lianidou

Professors/Researchers from International Partner Organisations for ACCC networking:

Participating Organization

JP No.	Joint Project Title	Start Month	End Month
1	Data Integration	1	30
2	Biobanking and Omics Technology	1	36
3	Multiple Myeloma (MM)	1	36
4	Paediatric Cancers	1	36
5	Colorectal Cancer (CRC)	1	36
6	Gynaecological (breast and ovarian) cancer	1	36
7	Head and neck cancer (HNSCC)	1	36