

MicromorphTM Technology

HelioSphera S.A., Greece February 2012

HelioSphera S.A.

Introduction

- Greek company founded in 2007
- **60MW** thin film solar module production line, Tripoli, Greece
- Swiss Technology
 - ❖ Oerlikon Solar Micromorph™ Technology
- Biggest micromorph thin film plant in Europe
 - 500.000 modules/year
- Team of 200 people with international backgrounds
 - PhD or Post-Doctoral level: 16
 - Postgraduate level: 15
- Production started in Q4 2009 and the ramp up was completed in Q3 2010
- 30 MW sales
 - ❖ New markets: Middle East

Production Facility, Tripoli Greece

The Choice of MicromorphTM

Benefits

Features	Benefits
Micromorph technology	 Improved spectral response Good performance with diffuse light Better performance than c-Si under partial shading Higher energy yield in hot and sunny climates (Arizona, Middle East) due to low temperature coefficient
Usage of non-toxic and abundant materials	 Unlimited supply of raw material No hazardous compounds inside module No worries for disposal at the end of module lifetime
Minimum usage of materials and low process temperatures	Energy Payback Time (EPT) of only 1.5 years
Monolithic series connection of cells (laser scribing)	High reliabilityBest in class biased damp heat stability
Frameless glass-glass module	Easy & faster installation (Module Mounting Interface)Applicable for BIPV

Tandem Solar Cell Structure

Tandem Features

- Wide band gap material for top cell (a-Si:H): short wavelength absorption
- Low gap material for bottom cell (eg. mc-Si:H): long wavelength absorption
- Absorption of low energy photons in bottom cell, which would not be absorbed in single top cell

Advantages

- Better utilization of solar spectrum compared to single junction cells (e.g. a-Si)
- Lower temperature coefficient compared to c-Si results to positive influence of yearly energy yield
- Wide spectral sensitivity for each component cell due to combination of two different semiconductor materials

Tandem solar cell structure

MicromorphTM Technology

Production Process Steps

Production Equipment

OPTICAL INSPECTION

FRONT GLASS CLEANER

TCO TOOL

SILICON DEPOSITION TOOL

LASER TOOL

HelioSphera R&D Projects

HelioSphera's R&D Department is exploring new areas to achieve higher efficiency modules in cost effective mass production. Few of the innovations are listed below:

- Absorber layer (a-Si:H and mc-Si:H) optimization
 - Material structure development by deposition parameters optimization
- TCO layer optimization
 - Light trapping and transmittance improvement in combination with doping optimization will result in power gain
- Intermediate reflector
 - The use of an intermediate reflector will improve cell current
- Active area maximization
 - Dead zone reductions
- New module design
 - Innovative cell design
- Novel materials for improved light trapping
 - Textured glass, polymeric foil

HelioSphera Research Collaborations

- 3% of Production is dedicated to R&D Projects
- FP7 European Project PEPPER
 - Research project coordinated by the European Commission/DG Energy
 - Target:157W stabilized power
- SYNERGASIA 2009 project in collaboration with National Centre of Scientific Research "Demokritos" (Department of MicroElectronics)
 - Light management improvement (ZnO Nanowires)
 - Process optimization (a-Si Laser Annealing)
- Democritus University of Thrace (DUTH), Electrical Engineering Department
 - Optical and structural material characterization
- Future Projects (Proposals submitted)
 - Synergasia 2011 Proposals
 - N-GeneSiS: In collaboration with DuPont/AirLiquide/CRES/DUTH/University of Patras
 - Innovative cost effective materials for module assembly and new mounting
 - Higher deposition rates for increase line throughput
 - OGYGIA: Development of an innovative hybrid power system in collaboration with PPCR (Public Power Corporation Renewable)
 - Hybrid Organic-Silicon Solar Cells (Si Nanowires) FP7-ENERGY-2012-1
 - Plasma Cleaning Process Optimization FP7-ENERGY-2012-1
 - Hellenic Photonics Cluster (H-PHOS)- Laser development
 - PV STERN

Oerlikon Solar Customers

More than 500MW capacity

Certificates

ISO 9001:2008 **Quality Management System**

CE

TÜVRheinland

RoHS

