
HORIZON 2020 - Future & Emerging Technologies (FET) Work Programme 2018-2020 & FET Flagships Athens, 26 September 2017

## FET Flagships in Horizon 2020: Graphene, Human Brain Project and Quantum

**Thomas Skordas** 

Director 'Digital Excellence and Science Infrastructure' DG Connect, European Commission

## Horizon 2020 [2014-2020]





## Future and Emerging Technologies (FET)

"Future and emerging technologies shall support collaborative research in order to extend Europe's <u>capacity for advanced and paradigm-changing</u> <u>innovation</u>. It shall foster <u>scientific collaboration across disciplines</u> on <u>radically new, high-risk ideas</u> and accelerate development of the most promising emerging areas of science and technology..."

HORIZON 2020 - THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATION (2014-2020)

| $\left( \right)$ | Future and Emerging Technologies |                      |                              |  |  |
|------------------|----------------------------------|----------------------|------------------------------|--|--|
|                  | Individual research<br>projects  | Research Clusters    | Strategic Research<br>Agenda |  |  |
|                  | Early Ideas                      | Incubation           | Large-Scale Initiatives      |  |  |
|                  | FET Open                         | <b>FET Proactive</b> | FET Flagships                |  |  |
|                  |                                  |                      |                              |  |  |
|                  |                                  |                      |                              |  |  |



### **DRAFT FET Work Programme 2018-2020**



FET Open call continues: ~ 650 M€ budget

**Deadlines**: 16 May '18 [123 M€], 24 Jan '19 [160M€]

18 Sep '19 [160 M€], 13 May '20 [203 M€]

(1) FET Proactive: Calls in 2018 and in 2020

Incubation

**FET Proactive** 

Large-Scale Initiatives



European Commission

- ◆ 2018: 6 topical areas for 88 M€
- (2) FET Proactive HPC: Calls in 2018, 2019 and 2020
- ◆ 2018: INCO (Mexico & Brazil) for 4 M€
- ◆ 2019: Extreme scale HPC technologies: 64 M€
- In the Area of the Area of
- ♦ NEW: Quantum Technologies [130 M€]
- NEW: preparatory actions for new Flagships [6 M€]
  - (1) ICT and Connected Society
  - (2) Health and the Life Sciences
  - (3) Energy, Environment and Climate change

## **FET Flagships**

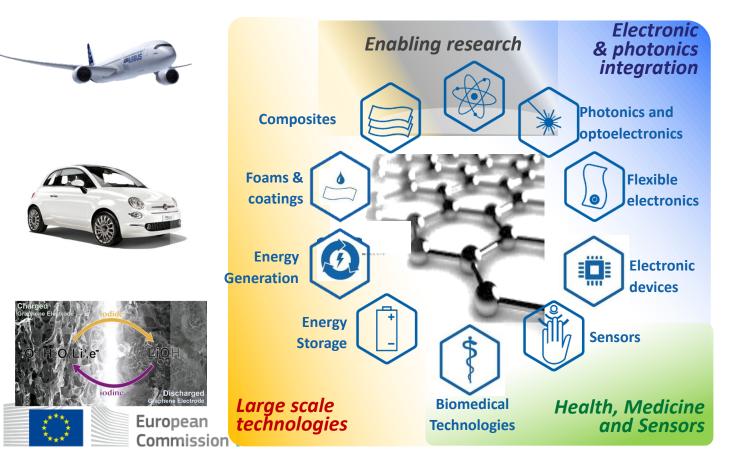
### What are they?

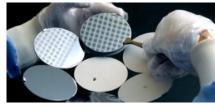
- Science-driven, large-scale research initiatives built around an ambitious unifying vision
- grand S&T challenges requiring interdisciplinary cooperation and involving academia and industry
- convert scientific advances into technology developments: from lab to the market place

~ 1 Billion Euro

~ 10 year duration

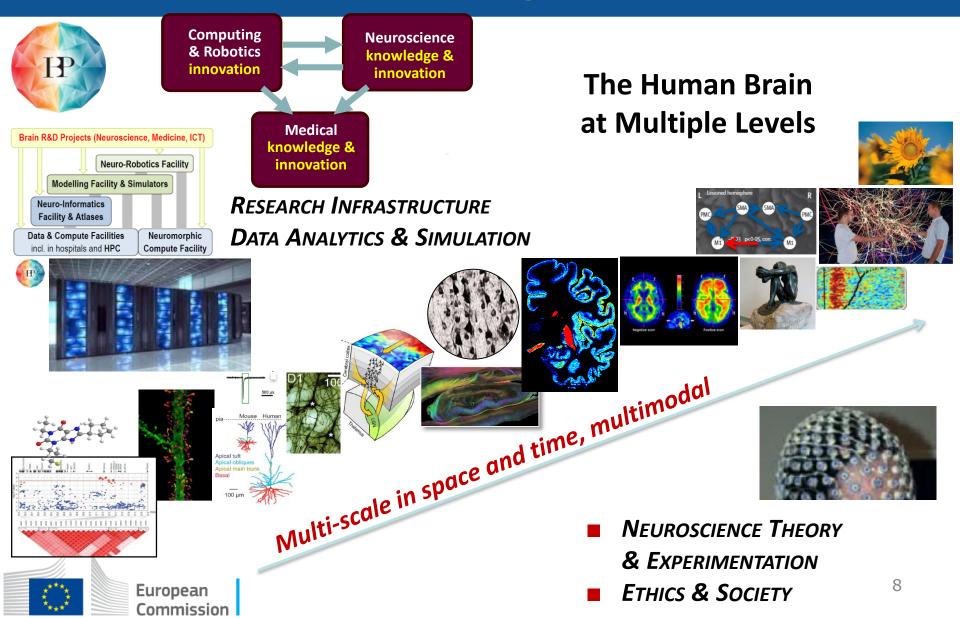
Flagships are implemented in close cooperation between the European Commission and the Member States





## Why FET Flagships?



### The Graphene FET Flagship: Large potential for many applications


AIM: Move graphene and related layered materials from the lab to the market
Consortium: 150+ partners from 23 countries, and almost 50 associated members
Duration and budget: October 2013 for 10 years – EU budget: ~380 M€ (FP7 + H2020)
Driven by a Science and Technology roadmap + Technology and Innovation roadmap



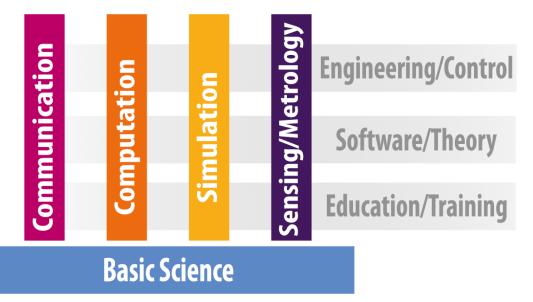




### The Human Brain Project FET Flagship (HBP) for understanding the brain



### NEW: FET Flagship on Quantum Technologies Draft


**April 2016**: The European Commission announces a Flagship initiative on Quantum Technologies

#### Aims

- unlock the full potential of quantum technologies
- accelerate their development and bring commercial products to public and private users

#### **130 M€**

#### Closing Date: 20 FEB 2018



Final report of the High Level Steering Committee on the Quantum Technologies Flagship <a href="https://tinyurl.com/qt-hlsc-report">https://tinyurl.com/qt-hlsc-report</a>



### **ICT Proposers' Day**

Prepublication of (DRAFT) FET work programme 2018-2020: https://ec.europa.eu/programmes/horizon2020/en/what-work-programme

ICT Proposers' Day https://ec.europa.eu/digital-single-market/en/events/ict-proposers-day-2017





## High Level Group ("Lamy Report")

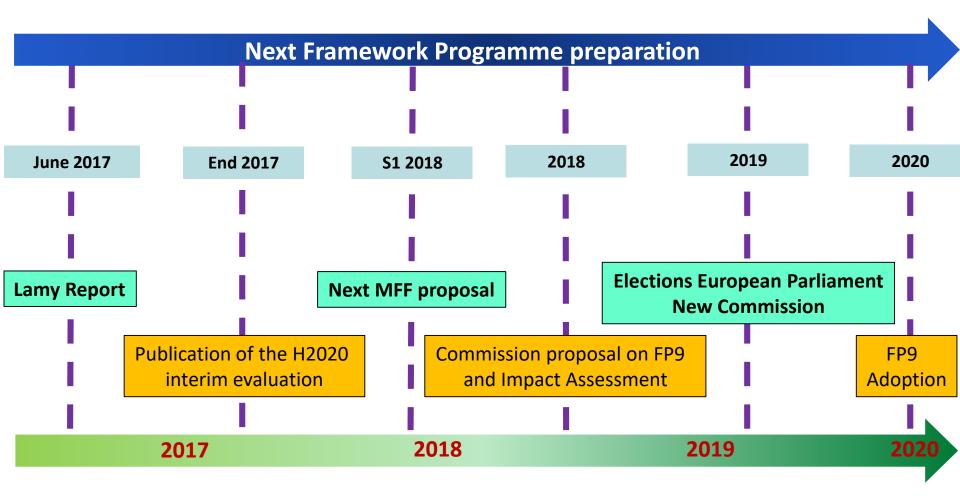
#### https://ec.europa.eu/research/evaluations/index\_en.cfm?pg=hlg

A vision and strategic recommendations to maximise the impact of the future EU R&I programmes: 'LAB – FAB – APP: Investing in the European future we want'

#### 11 recommendations

Budget; Innovation policy; Education and training; New FP design for impactful research; "Mission-oriented" challenges; Synergy with structural funds; Simplification; Involving the citizens; Aligning EU & national R&I actions; International Cooperation;

Better communications


- Science and Skills
- 3 pillars:-•
  - Innovation & Competitiveness Global Challenges



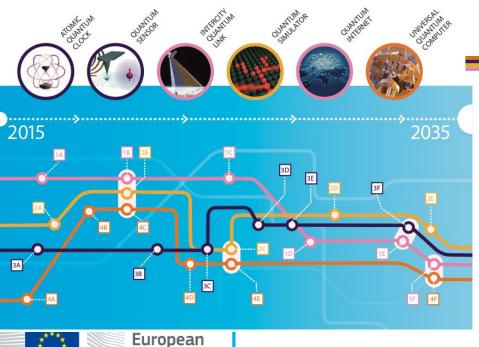


European Commission

### Planning Towards FP9 Draft






# **THANK YOU!**



## **The Quantum Manifesto**

- an initiative of the European Quantum Community
- published in May 2016 (NL Presidency event) supported by over 3500 scientists, research institutions and companies
- main goal: aid the selection of QT as the new European flagship project
  <a href="http://qurope.eu/manifesto">http://qurope.eu/manifesto</a>





Commission

|            | 1. Communication                                                                | 2. Smulators                                                                                     | 3. Sensors                                                                                    | 4. Computers                                                                                   |  |
|------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
|            | 0-5 years                                                                       | A Smulator of motion of                                                                          | ۸ O                                                                                           |                                                                                                |  |
|            | A Core technology of quantum<br>repeaters                                       | electrons in materials                                                                           | A Quantum sensors for niche<br>applications (incl. gravity and<br>magnetic sensors for health | A Operation of a logical qubit<br>protected by error correction<br>or topologically            |  |
| -          | B Secure point-to-point<br>quantum links                                        | B New algorithms for quantum<br>simulators and net works                                         | care, geosurvey and security)                                                                 | B New algorithms for quantum computers                                                         |  |
|            |                                                                                 |                                                                                                  | B More precise atomic clocks<br>for synchronisation of                                        |                                                                                                |  |
|            |                                                                                 |                                                                                                  | future smart networks,<br>incl. energy grids                                                  | C Small quantum processor<br>executing technologically<br>relevant algorithms                  |  |
| 5-10 years |                                                                                 |                                                                                                  |                                                                                               |                                                                                                |  |
|            | C Quantum networks between<br>distant cities                                    | C Development and design of<br>new complex materials                                             | C Quantum sensors for larger<br>volume applications including<br>automotive, construction     | D Solving chemistry and<br>materials science problems<br>with special purpose quantum          |  |
|            | D Quantum credit cards                                                          | D Versatile simulator of quantum<br>magnetism and electricity                                    | D Handheld quantum navigation devices                                                         | computer > 100 physical qubit                                                                  |  |
|            | > 10 years                                                                      |                                                                                                  |                                                                                               |                                                                                                |  |
|            | E Quantum repeaters<br>with cryptography and<br>eavesdropping detection         | E Smulators of quantum<br>dynamics and chemical<br>reaction mechanisms to<br>support drug design | E Gravity imaging devices based<br>on gravity sensors                                         | E Integration of quantum circuit<br>and cryogenic classical control<br>hardware                |  |
|            | F Secure Europe-wide internet<br>merging quantum and<br>classical communication |                                                                                                  | F Integrate quantum sensors<br>with consumer applications<br>including mobile devices         | F General purpose quantum<br>computers exceed<br>computational power of<br>classical computers |  |
|            |                                                                                 |                                                                                                  |                                                                                               |                                                                                                |  |