
Ensuring the quality and interoperability of open cultural
digital content: System architecture and scalability

Haris Georgiadis, Vangelis Banos, Ioanna-Ourania Stathopoulou, Panagiotis Stathopoulos, Nikos Houssos, Evi Sachini

National Documentation Centre / National Hellenic Research Foundation
Athens, Greece

{hgeorgiadis, vbanos, iostath, pstath, nhoussos, esachin}@ekt.gr

Abstract-We present an Open Cultural Digital Content

Infrastructure, a platform providing a coherent suite of loosely­

coupled services that aim to promote metadata quality in

repositories and facilitate metadata data and digital content

reuse. The key functions of the infrastructure are the aggregation

of metadata and digital files and the automatic validation of

metadata records and digital material for compliance with

desired quality specifications. The system that has recently

moved to production, is currently being employed to ensure the

quality standards of the output of more than 70 projects that

support Greek cultural heritage organisations and are funded by

the European Union structural funds. These projects are

expected to produce more than 1.5 million digitised and born­

digital items accompanied with detailed metadata. The validation

is based on a set of quality and interoperability specifications that

have been developed for the purpose. In this paper we emphasize

on Validator and Aggregator components and present

experimental results of their scalability

Keywords - Metadata aggregation, Metadata quality,

Metadata validation, Digital content aggregration, Digital content

aggregration validation, Cultural Heritage Infrastructures, OAI­

PMH, Interoperability guidelines, Metadata harvesting.

I. INTRODUCTION

The issue of appropriate digitization, documentation and
preservation of cultural heritage has been widely recognised
for its significance, resulting in a great number of large-scale
efforts worldwide. A key issue in achieving the appropriate
return from the corresponding investments is ensuring both the
quality of the output at the level of both the metadata records
and the digital files and their appropriate safe-keeping,
dissemination and preservation.

In the past, issues that are hampering the reuse and added
value of the documented and digitised cultural heritage items
have been observed such as inadequate and non-standards
compliant documentation (e.g. use of custom data models
instead of established international schemata), poor quality in
digitisation and relevant processing (e.g. low image resolution,
omission of Optical Character Recognition in scanned texts),
non-availability of standard system interfaces for
interoperability (lack of OAI-PMH support), failure to secure
appropriate safe-keeping of digital files and interruptions
(sometimes permanent) in the operation of web application /
repositories for the wide dissemination of the material.

To avoid these phenomena in currently running digital
cultural heritage funded projects in Greece, a scheme has been
created for the development of an infrastructure to aggregate
centrally both metadata records and digital files produced in
the frame of these projects and automatically validate their

conformance with interoperability and quality specifications.
A set of such specifications has been developed at the initial
stage of the funding programme [1].

The infrastructure that has been built to support this effort
is presented in this contribution. It contains a Metadata
Aggregator that operates at a national level and provides with
a series of added-value services upon them, such as a Search
Engine and centralised disposal of content as Linked Data, and
a Content Validator that validates the registered repositories
against interoperability requirement and the provided content,
including both metadata and digital files, against a large and
extendible pool of specifications. The Validator is to be used
both by the Aggregator personnel to ensure the quality of the
metadata and digital files that are to be ingested and published
by the Aggregator, and by the content managers and project
contractors of the repositories in order to validate their content
and to take the necessary steps towards conforming to the
specifications. The Validation comprises two components, a
front-end and a back-end. A shared, autonomous harvester
component supports the operations of both the aggregator and
the validator. Communication among the components is
perfonned via REST APIs. The architecture of the
infrastructure is depicted in Figure 1.

In this paper, we present the workflow of the infrastructure
and emphasize in the Validator and Aggregator components.
Specifically, we analyse the architecture of these components
in Section 3, we present the compare the infrastructure
workflow on Section 4 and display experimental results of the
Aggregator and Harvester scalability in Section 5.

II. RELATED WORK

Several repository validator systems are in production
operation since a number of years, such as the OpenAIRE
validatorl based on the OpenAIRE guidelines for repositories
[2], the ARIADNE validator2 of learning object repositories
[3], the OAI-PMH validator3 and validator systems produced
in the context of Europeana4 such as the V AMP semantic
validation Service for MPEG-7 profile descriptions [5]. Some
key features and differentiations of our solution are
summarized in the following:
• We validate not only metadata records but also digital

files and in addition we check the correct mapping of
digital files with the corresponding metadata records.

I http://www.openaire.eu:8380/dnet-validator-openaire/

2 http://ariadne.cs.kuIeuven.be/validationService/validateMetadata.jsp

3 http://validator.oaipmh.com/

4 http://pro.europeana.eu/web/guestlthoughtlab/improving-metadata-quality

• Certain eXIstmg systems limit themselves to only
syntactic validation using technologies such as XML
Schema and the schematron assertion language [4], while
we exercise also semantic validation (as does VAMP [5]
and to some extent also OpenAIRE [2]).

• Semantic validation is provided with a great degree of
flexibility. For instance, we check whether metadata
values of key attributes (e.g. locations, subjects,
languages, time periods) belong to formally defined (e.g.
with SKOS) controlled vocabularies - the vocabularies
can be dynamically configured in the validation rules and
do not need to be known a priori to the system.

• Combinations of validation rules are expressed using a
domain specific language which is designed to be usable
by non-programmers.

• Validation administrative procedures (e.g. connection
with repository owners, checking for compliance using
rules of a specific funding programme mandate,
reporting) are decoupled with the actual validation logic
and implemented at a separate component (validator
front-end).

On the other hand numerous harvester and aggregator
systems have been developed and are in production operation,
each attempting to meet specific business needs and tailored to
specific domains. The COnnecting REpositories (CORE)
aggregator5 aims to facilitate the access and navigation across
relevant scientific papers stored in Open Access UK
repositories. Openarchives.gr6 is the largest portal providing a
single point of access to Greek scientific and cultural digital
content. National Science Digital Library (NSDL)7

implemented a digital library based on metadata aggregation
of educational content using Dublin Core and OAI-PMH.
REPOX8 is a framework which comprises several channels to
import data from data providers and provides services to
transform data among schemas and to expose the results to the
exterior. It is often used as a harvester component in
aggregation infrastructures. European Digital Library
(Europeana)9 has been established through the aggregation of
heterogeneous cultural content from multiple content
providers, which needs to be delivered reliably and
consistently, using a commonly agreed metadata schema. The
aggregation/ingestion infrastructure of Europeana is a
complicated ecosystem strictly tailored to its business
processes that consists of many components includin�: a
metadata harvester (REPOX), a mapping tool (MINT'), a
CRM system, a Metadata Storage and Indexing system,
namely Colelib, and an ingestion framework that orchestrates
all these components together.

The aggregator of our infrastructure stores metadata
internally in the EDM [6] metadata format, which is the latest

5 http://core.kmi.open.ac.uk/search

6 http://www.openarchives.gr/

7 http://nsdl.org/

8 http://repox. ist.utl.ptl

9 http://www.europeana.eu/portal/
10 Mint (Metadata Interoperability Services): http://mint.image.ece.ntua.gr

recommendation of Europeana for structuring cultural
metadata. EDM is RDF-based providing with an embedded
contextualization mechanism. The Aggregator uses the
Europeanan Corlib as an efficient EDM Storage and Indexing
backend - thought without being strictly tied on it - which,
being integrated with Apache Solrll, inherently, features
efficient distributed full-text search on ingested EDM
metadata records. Unlike most aggregator systems which
support only flat metadata formats, the Aggregator component
of our infrastructure, due to storing metadata internally as
EDM, natively supports sophisticated contextual-based
searching and content disposal as Linked Data. The
autonomous Harvester component of our infrastructure that
supports the operations of both the Aggregator and the
Validator, unlike other harvester systems, harvests and stores
not only metadata but also digital files.

III. INFRASTRUCTURE ARCHITECTURE, DESIGN AND

IMPLEMENTATION

A. Metadata and Digital File Harvester
An autonomous harvester system is built to harvest and

store both metadata and digital files. In order to improve the
efficiency and the throughput of the harvester, the execution is
implemented in a pipe lined workflow scheduling [7] which
adopts the pull data workflow model, needing no
materialization of intermediate results. The OAI-PMH XML
responses are parsed on-the-fly using the Streaming API for
XML and as soon as the parsing is finished, they are being
forwarded to dependent tasks in the workflow which are being
executed simultaneously. Digital files are harvested either
from the metadata, using XPath expressions to specify the
metadata fields containing the URIs to the digital files, or by
providing/uploading the digital files directly to the system.
Apart from a web GUI, a REST API has been also
implemented that allows external software components (such
as the Validator or the Aggregator) to trigger and manage
harvests and to obtain harvested metadata and digital files.

B. Automatic Validation of Metadata and Digital Files
The Validator is created with the aim to implement a

validation model which operates in many levels: repository
interoperability, metadata and digital file validation. We
present the system architecture, the Validation Domain­
Specific Language to express validation logic and some
implementation details we consider valuable for consideration.

The Validator consists of two autonomous systems, the
back-end and the front-end. The back-end works closely with
the Harvester to retrieve content which is then validated using
complex validation business rules at multiple levels
(repository, metadata, digital files). Highly granular results are
recorded and are made available through the user interface of
the validator front-end. Some key system architecture points
of the entire system are summarised in the following:

• Interfaces: Both systems have a web GUI for controlling
every aspect of the validation processes. Furthermore, the
Validator back-end is featuring a REST API that allows
external software components to trigger and manage
validation processes.

11 Apache Solr: https://lucene.apache.org/solr/

REST API

Aggregator System (Java)

Persistence / Web Layer

Provider Registry (Java)
Web layer

Web Layer

Management
WEBGUI

Figure 1 The Architecture of the infrastructure and service components

• Input: The input (metadata records or digital files) comes
from the Harvester. A validation process may trigger a new
harvest process in the harvester or utilize metadataJdigital
files that have been already harvested by the harvester.

• Output: The validation results are stored permanently and
can be served anytime both in analytical (per metadata
record/digital file) or aggregative form, via the REST API
and the web GUI

1. Validation Domain-Specific Language (VDSL)
An important design choice considered the representation

of the validation rules and the introduction of validation logic
into the system. The approach of hard-coding the validation
logic directly into the application code was rejected from the
start, since it would result in a platform which would be hard
to maintain and modify in the future, especially in view of the
expected continuous evolution of validation requirements and
rules. Instead, a dynamic platform was developed to support
the definition of arbitrary validation models outside the
application code with the use of a novel Validation Domain­
Specific Language (VDSL). A domain-specific language
(DSL) provides a notation tailored towards an application and
is based on the relevant concepts and features of that domain
[12]. We believe that the most elegant, efficient and extensible
way to express complex digital repository, metadata and
digital file validation logic is by creating a Validation
Domain-Specific Language tailored to our needs. There are
many advantages in creating special DSL for validation
purposes:

• Business logic is directly converted to validation models
without the need of software implementation.

• It is possible for non-programmers to define and update
validation models according to business logic.

• It is possible to create an infmite number of validation
models with very high flexibility, adapting to evolving
requirements and external changes.

• The software core of the VDSL remains compact and
maintainable regardless from business rules development.

The VDSL consists of the following building blocks: a)
Metadata element validation rule constructs, b) metadata
record validation rule constructs, c) digital file validation rule
constructs, d) boolean operators, e) control flow operators.
VDSL files are encoded in JSON and are stored in the
validator Back-End configuration. Users may choose to apply
any rule set to a digital repository of their choice.

Metadata element validation rule constructs are used to
evaluate the value of specific XML elements. For instance, the
following rule evaluates if <dc:language> elements follow the
ISO 639 Standard for Language Codes [13].

The notation indicates that all <dc:language> elements
must be checked with the function is0639 of the python
module language and the business rule which dictates this is
identified by "repositoryl3".

Metadata record validation rule constructs are used to
evaluate the structure of whole XML metadata records. For
instance, the following rule evaluates if records follow the
Europeana Semantic Elements XML Schema.

"xsd_url": http://www.europeana.eu/schemas/ese/ESE­
V3.4.xsd} }

Digital file validation rule constructs are destined to
evaluate digital files. For instance, we can evaluate the
dimensions or color depth of images against some thesholds.

{ "files": {
"image. resolution": {"spec_id": "imageOl", "min_width": 800,

"min_height": 600},
"image.colordepth": {"spec_id": "imageOl", "min_depth": I}

} }
The use of boolean operators (AND, OR, etc) and Control

flow operators (IF, ELSE, etc) is also critical to express
complex rule sets. Figure 2 presents a complete validation rule
set example.

R repository": I
"oaipmh . check_commands": {"spec _ idR: .. repository03" ,I ,
"oaiprnh . check_subsets": r "spec _ id": .. repositoryOS" ! ,

5. "oaipnh . world_standards": {"spec _ id": "repository22"},

"oaipmh.linked_data": ("spec_id": "repository23 "),

"controlled_vocabulary . validate_all": ("spec _ id": II repository16")

I.
"record": I

10. "xmlstructure. record has elements": {"spec id": "repository02", "elements":

("dc:contributor", "dc:cover�ge"� "dc:creator",
-

"dc:date, "dc:description", "de: format" ,

"dc:identifier", "dc:language", "dc:publisher",

"dc: relation�, �dc: rights�, "dc: source" ,

"dc:subject", "dc:title", "dc:type"J

l5. I.
"xmlstructure. record_has _ eler::ents _or": ("spec _ id": "repositoryIS", "elements

["dc. date", "dcterms. created" J),

"search_engines. check": ("spec _ id": "repositoryOS"),

"xmlstructure. record_has _view_or _preview": I "spec _ id": "repository l O" ! ,
"controlled_vocabulary. time yeriods": ("spec _ id": "repository21")

20. I.
"dc:identifier": (

I.

"url.exists": i"spec_id": "repository09", "if": "url . syntax"),

"url.handle": ("spec_id": "repository09", "at_least_one": 1)

2S. "dc:language": 1 "language.is0639": I "spec_ld": "repository I3")I,

"dc: date": ("date. isoS601": I "spec _ id": "repository I 4 " I) ,

"dc:creator": (

"author.check": I"spec_id": "repository 1 2" J ,

"controlled_vocabulary. check": I "spec _ id": "reposi toryIS")

30. I.

35. ,

"dc: subject" : ("controlled_vocabulary. check": ("spec _ id": II reposi toryl 1" I) ,

"dc: coverage": I "controlled_ vocabulary. check": "spec _ id": "repository 1 9") I,
"dc :publisher": I "controlled_vocabulary . check": I "spec _ id": .. repository20"

"dc: type": ("controlled_vocabulary. check": ("spec _ id": .. repositoryll" II

Figure 2 Dublin Core Validation Ruleset Example

2. Technical implementation considerations
One of the greatest challenges in implementing the

Validator Back-End is performance and responsiveness. The
platform must be able to evaluate large datasets of metadata
and digital files while maintaining a responsive Web VI and
REST API for the Validator Front-End or any other system
which needs establish communication and exchange
information in parallel. To achieve this goal, we handle
validation tasks using asynchronous job queues. The web
application server maps a validation process into multiple
individual atomic subtasks which are inserted in the
asynchronous job queue of the system, stored in a Redis Listl2.
Background workers, whose number equals the number of
server CPU cores, are constantly monitoring the job queue for
new tasks. As soon as they identify them, they begin

12 http://redis.io/topics/data-types

processing them one by one and store the results in a Mysql
database. What is more, the platform is highly scalable as it is
possible for the asynchronous job queues to scale not only
vertically depending on the number of available server CPU
cores, but also horizontally, as multiple servers can be
configured to share the same asynchronous job queue and
mysql database.

C. Aggregator
The Aggregator in our solution is the system that

aggregates metadata from registered content providers, creates
and stores thumbnails for digital files and provides with a
series of added-value services, such as a metadata search
engine and the disposal of the ingested metadata as Linked
Data and for harvesting via OAI-PMH. The metadata records
and the digital files from which thumbnails are created derive
from the Harvester. The aggregator stores metadata internally
in the Europeana Data Model (EDM) [6], which is the new
proposal of Europeana for structuring cultural metadata. The
Aggregator supports an extensible pool of transformations
from well-known metadata formats to EDM.

The Aggregator uses the Europeana EDM Storage
component, named Europeana Corlib, as an EDM Storage and
Indexing backend. The integration with the Europeana Corelib
is done through a generic EDM Storage and Indexing API
which is agnostic to the storage backend that is actually used
and can cover any storage system able to persist and index
EDM structures. The Europeana Corelib stores EDM metadata
records in Mongo DB and indexes them using the Apache
Solr.

We designed and implemented a solid and extensible
ingestion workflow that starts from the retrieval of
metadataldigital files from the Harvester (using its REST
API), provided that are already validated by the Validator, the
enforcement of the appropriate transformations, including
metadata format transformations and URI conversions, and
ends up in the persistence of the EDM metadata records in the
EDM Storage and Indexing System and of the thumbnails
derived from the digital files in a noSQL database (Mongo
DB: GridFS). The workflow, which is illustrated in Figure 3 is
implemented in a pipe-lined fashion, consisting of a series of
modular operators and adopts the pull data-flow pattern,
needing no materialization of intermediate results.

IV. VALIDATION AND INGESTION WORKFLOW

The full workflow of the platform is shown in Figure 3.
The validation is triggered from the Validator Front-End by an
authorized user, who after selecting the provider under
validation and the validation ruleset and setting the harvest
parameters (metadata sets, date from-until, etc) (Figure 3: 1),
starts a new validation process. Then, a REST call 'Create
Validation request' is sent to the Validator Back-End
containing the harvest parameters (Figure 3: 2, 3) which, in
turn, sends a REST call 'Start harvest process' to the
Harvester (Figure 3: 4). The Harvester starts the harvesting
process and sends to the Validator Back-End the id of the
process (Figure 3: 5, 6, 7).

Validator Front ·End

Cont�1t Mlnlger

Validator Back·End

Aggregator System

Harvester

o . .u-p:\'m
Providers

Figure 3 Validation and Ingestion work flows

Both ids of the harvesting and the validation process are
sent to the Validator Front-End. In the meantime the Validator
Back-End requests the content from the Harvester and, as soon
as this is available, it begins the validating procedure (Figure
3: 8). The user can monitor the process from the Validator
Front-End and as soon as the validation procedure is finished,
the results are available (Figure 3: 9, 10). If the validation is
successful, the Content Manager can authorize the ingestion
process (Figure 3: 11). In this case, a REST call 'Start
Ingestion process' is send to the Aggregator, containing the id
of the harvest process (Figure 3: 11, 12). The Aggregator
requests the data from the Harvester and starts the Ingestion
process (Figure 3: 13).

V. EXPERIMENTAL RESULTS

Experiments were conducted using three OAI-PMH
datasets, dataset-l of 82,000 metadata records, dataset-2 of
205,000 metadata records and dataset-3 of 410,000 metadata
records. The datasets originated from harvesting the Hispana
organization 13 in ESE 14 metadata formal. All experiments
were run on an Intel i5 2.80GHz PC with 4GB of RAM,
running MS Windows 7. We used local single-node/non­
clustered installations of Mongo DB, Apache Solr and
PostgreSQL. A small portion of the harvested records were
deleted records, thus lacking metadata content, as illustrated in
Table 1.

A. Harvester Scaling Evaluation

In an effort to illustrate the harvester scalability, we started
a harvest process using as input dataset-3. The harvest took
place off-line; we had pre-downloaded the OAI-PMH

13 http://hispana.mcu.es

14 http://pro.europeana.eu/ese-documentation/

responses and fed the Harvester with these stored XML files,
in order to exclude network and repository response delays
from our measurements.

Table 1 Datasets

dataset-I

dataset-2

dataset-3

Total records "deleted" records with size inMB

records metadata

82,004 4 82,000 138MB

205,920 920 205,000 344MB

432,435 22,435 410,000 679MB

Harvest Rate Progress, dataset-3
(410,000 meta data records + 22,450 delete records)

25� ,---,---,---,---,---,--,,--,,--,---,---,
�

� 2� +--::-+---t---t---t---t---If:::
-2
8 15�
�

i 1�
� 5000

:I:
o

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of completion (harvested records)

Figure 4. Harvest rate scaling during dataset-3 harvesting process

Figure 4, illustrates the average harvest rate per chunk of
10% (43,243 records, respectively) towards completion. The
results depicted almost constant harvest rate throughout the
entire process, averaging at 18,344.41 records per minute. The
last 20% of the records included an increasing number of
deleted (empty) records, accelerating the process, as shown in
the graph.

B. Aggregator Scaling Evaluation

We conducted similar experiments in order to evaluate
whether the Aggregator also scales well for increasing amount
of metadata. We excluded the "deleted" records (Table 1, 2nd
Column) from this experiment and used only those which
included metadata content (Table 1, 3rd Column). The

ingestion process is a pipelined process that includes fetching
metadata records from the Harvester, the transformation of
each record from ESE XML format to a corresponding EDM
graph with valid and accessible URIs and the storage of this
graph in the EDM Storage and Indexing System, namely,
Europeana Corelib, which implies storing the graph in Mongo
DB structures and fully indexing each docwnent value by an
Apache Sorl installation.

Figure 5 illustrates the average ingestion rate for dataset-l
(82,000 metadata records) and dataset-3 (410,000 metadata
records), respectively. The ingestion rate is illustrated per
chunk of 10% (8,200 records for dataset-l and 41,000 records
for dataset-3, respectively). The results depicted almost
constant ingestion rate throughout the entire process,
averaging at 2236.77 records/minute for dataset-l and at
2,127.06 records/minute for dataset-3. The average ingestion
rates for the three datasets are shown in Figure 6.

-dataset-l (82,000 metadata records) -dataset-3 (410,000 metad ata re cords)

3000
'f 2500
":;-
1 2000
-! 1500

;l!
• 1000
� 500 j

o

- i'="'" V-
--

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of completion (ingested reoord-sl

Figure 5. Ingestion rate scaling during ingestion pocesses of dataset-I and
dataset-3 (ignoring del ere records).

Average meta data records ingestion rates

_ 2�0 '---'T'h77-------���------��----
" � 2000
."
8 1500
�
� 1000
�
!5 500
"t: '"
E o�--�--�-----

82,000 metadata
records (dataset-I)

205,000 meta data
records (dataset-2)

Metadata Datasets

Figure 6 Average ingestion rates per dataset

410,000 meta data
records (dataset-3)

C. Validator Back-End Scaling Evaluation

Finally, we evaluated whether the Validator Back-End is
capable to cope with the rest of the infrastructure in terms of
performance. Using the datasets presented in Table 1, we
performed full evaluations using a complete VSDL Ruleset
such as the one presented in Figure 2, with only a minor
modification: we removed the validation rules which required
network connections with external systems in order to avoid
delays induced by 3rd parties. Figure 7 illustrates the average
validation rate for all datasets. The average validation rates
vary from 1822.491 to 1845.12 records/minute, which are on
par with the performance of the rest of the system components
as presented in Figures Figure 4, Figure 5 and Figure 6.

Average metadata records validation rates
2500 -,---------------------------------­

C � 2000 +---�8'1�L-------l8�LL�------l82�.�'�­
'E 1 1500

� 1000
a:

:5 500
.�
:!1
'iij > 82,000 metadata 205,000 metadata 410,000 metadata

records (dataset-l) records (dataset-2) records (dataset-3)
Metadata Oatasets

Figure 7 Average validation rates per dataset

VI. CONCLUSIONS-FUTURE WORK
In this paper, we presented an Open Cultural Digital

Content Infrastructure, which consists of (1) a Harvester, (2) a
Validator and (3) an Aggregator component, which support
metadata and digital file validation and ingestion. We
presented the workflow of the infrastructure and emphasized
on the key aspects of the architecture. The Validator was
developed to support the definition of arbitrary validation
models outside the application code with the use of a novel
Validation Domain-Specific Language (VDSL). Finally, we
conducted an experimental study which demonstrated that all
system components scale well .

ACKNOWLEDGMENT

The work presented in this article has been partly
supported by the project "Platform for provision of services
for deposit, management and dissemination of Open Public
Data and Digital Content" (Ref No 327378) which is co­
funded by Greece and the European Union-European Regional
Development Fund through the Operational Programme
"Digital Convergence" (NSFR).

REFERENCES

[I] Stathopoulos et al. 2013. Specifications and features for the
interoperability of open digital content. http://helios-
eie.ekt.gr/EIE/handle/l 0442/8887

[2] Schirrwagen, J., Manghi, P., Manola, N. , Bolikowski, L. , Rettberg, N. ,
& Schmidt, B. (2013). Data Curation in the OpenAIRE Scholarly
Communication Infrastructure. Information Standards Quarterly, Fall,
25(3), 13-19.

[3] Klerkx J, Vandeputle B, Parra G, Santos JL, Van Assche F, Duval E
(2010) How to share and reuse learning resources: the ARIADNE
experience. Sustaining TEL: from innovation to learning and practice.
Lect Notes Com put Sci 6383/2010:183-196.

[4] Jelliffe, Rick. "The schematron assertion language 1. 5." Academia
Sinica Computing Center (2000).

[5] Troncy, R. , Bailer, W. , Hoffemig, M., Hausenblas, M. (2010). VAMP: a
service for validating MPEG-7 descriptions wrt to formal profile
definitions. Multimedia Tools and Applications, 46(2-3), 307-329.

[6] Europeana Data Model Primer, available at http://pro.europeana.eu/edm­
documentation

[7] Anne Benoit, Dmit V. <;:atalyUrek, Yves Robert, and Erik Saule. 2013. A
survey of pipe lined workflow scheduling: Models and algorithms. ACM
Com put. Surv. 45, 4, Article 50 (August 2013)

[8] Van Deursen, Arie, and Paul Klint. "Domain-specific language design
requires feature descriptions." CIT. Journal of computing and
information technology I 0.1 (2002): 1-17

[9] ISO, John D. Byrum. "639-I and ISO 639-2: International Standards for
Language Codes. ISO 15924: International Standard for names of
scripts." 65th IFLA Council and General Conference Bangkok,
Thailand. 1999.

