
Enhanced OAI-PMH services for metadata sharing in

heterogeneous environments

Nikos Houssos, Kostas Stamatis, Panagiotis Koutsourakis

National Documentation Centre, National Hellenic Research Foundation, Greece

{nhoussos, kstamatis, kutsurak}@ekt.gr

Sarantos Kapidakis

Laboratory on Digital Libraries and Electronic Publishing, Department of Archive

Library and Museum Sciences, Ionian University, Greece

sarantos@ionio.gr

Emmanouel Garoufallou

Department of Library Science and Information Systems, Alexander Technological

Educational Institute of Thessaloniki, Greece

mgarou@libd.teithe.gr

Alexandros Koulouris

Department of Library Science and Information Systems, Technological Educational

Institute of Athens, Greece

akoul@teiath.gr

Abstract
Europeana has put in a stretch many known procedures in digital libraries, imposing
requirements difficult to be implemented in many small institutions, often without
dedicated systems support personnel. Although there are freely available open source
software platforms that provide most of the commonly needed functionality such as OAI-
PMH support, the migration from legacy software may not be easy, possible or desired.
Furthermore, advanced requirements like selective harvesting according to complex
criteria are not widely supported. To accommodate these needs and help institutions
contribute their content to Europeana, we developed an integrated set of tools, with a
particular focus on the case of data providers with software incompatible with OAI-PMH.
We developed wrappers enabling schema mapping and repeatable generation and
harvesting of ESE-compatible metadata via OAI-PMH. The system is able to select and
harvest only the desired metadata records, according to a variety of configuration criteria
of arbitrary complexity. We applied our tools to providers with sophisticated needs, and
present the benefits they achieved.

Abstract
Purpose – Managers of repositories / digital collections face the challenge of exposing
their data via OAI-PMH to multiple aggregators and conforming to their possibly
differing requirements, for example on output metadata schemas and selective harvesting.
The article proposes a toolset that enables individual digital collections owners to satisfy
such requirements even in cases that their IT and software infrastructure is limited and
does not support them inherently.

Design/Methodology/Approach – We have developed a software server that is able to
wrap existing systems or even metadata records in plain files as OAI-PMH sources. We
analysed the functionality of OAI-PMH data providers in a flow of discrete steps and
used a software library to modularize the software for these steps so that the whole
process can be easily customized to the needs of each pair of OAI-PMH data provider
and service provider. The developed server includes a mechanism for the implementation
of schema mappings using an XML specification that can be defined by non-IT
personnel, for example metadata experts. The server has been applied in various real-life
use cases, in particular for providing content to Europeana.
Findings – It has been concluded through real-life use cases that it is indeed possible and
feasible in practice to expose metadata records of digital collections via OAI-PMH even
when the data sources do not support the required protocols and standards. Even
advanced OAI-PMH features like selective harvesting can be supported. Mappings
between input and output schemas in many practical cases can be implemented entirely
or to a large extent as XML specifications by metadata experts instead of software
developers.
Research limitations/implications (if applicable)
Practical implications – Exposing data via OAI-PMH to aggregators like Europeana is
made feasible / easier for digital collections owners, even when their software
infrastructure does not inherently support the required protocols and standards.
Originality/value – The approach is original and applicable in practice to diverse
technology environments, effectively addressing the indisputable fact of the
heterogeneity of software and systems used to implement digital repositories and
collections worldwide.
Keywords OAI-PMH; metadata sharing; selective harvesting; interoperability;
information integration; Europeana; Europeana Semantic Elements; Biblio
Transformation Engine.
Paper type Research paper

1 Introduction

The proliferation of repositories worldwide has created a favourable environment for the

emergence of content aggregators that collect metadata-only records from individual data

sources and at a minimum provide unified search and browse functionality. Sharing

metadata to third parties, including aggregators, has become one of the major functions of

scientific and cultural repositories and at the same time a challenge for their managers

and developers.

Repositories and digital libraries -applications that facilitate the management of Library,

archive and museum content in a digital form (Giannakopoulos et al., 2012)- are widely

distributed among European Countries. A broad range of standards including various

formats, different content types and multiple metadata schemes are used. This

knowledge, either in the cultural or in the scientific sectors, should be accessible to

European citizens for awareness and dissemination as well as digital libraries and their

digital working environment should be considered as a platform for sharing and

disseminating knowledge (Garoufallou and Asderi, 2010; Garoufallou et al., 2010. In

order to cope with this need, various aggregation schemes have emerged. Europeana (the

Digital Library, Archive and Museum of Europe) is an evolving service that tries to be a

single access point for Europe’s cultural heritage. According to IRN Research (2011),

Europeana is of vital importance for European cultural awareness. The Europeana service

(Koninklijke Bibliotheek, 2009) is designed to increase access to digital content across

Europe’s cultural organizations (i.e. libraries, museums, archives and audio/visual

archives). Thus, it will constitute an umbrella of European metadata from distributed

cultural organizations. Europeana currently provides access to more than 26 million items

representing all types of materials including films, photos, paintings, sounds, maps,

manuscripts, books, newspapers and archival papers. This process brings together and

links up heterogeneously sourced content, which is complementary in terms of themes,

location and time. In February 2014, Europeana’s active partner network consists of

2,200 organizations from 33 countries. This network builds on the importance of local

identity, multiculturalism and multiliguality in Europe that achieved via a multilingual

digital library like Europeana (Vassilakaki and Garoufallou, 2013).

In order to achieve these goals European Union (EU) launched various projects. One of

the most fruitful was EuropeanaLocal (2008), which ran from June, 1
st
 2008 to 31

st
 May

2011. This project was designed to involve and support local and regional libraries,

museums, archives and audio-visual archives to: a) make the enormous amount of

content that they hold available through Europeana, and b) deliver new services.

The project was funded under the eContentPlus Programme of the European

Commission. It resulted in a Best Practice Network of distributed and interoperable

repositories. EuropeanaLocal had 32 partners from 27 countries, 1031 plus person

months and €4.3 million budget. By February 2014 EuropeanaLocal partners had made

available to the Europeana live service almost six million items. Over 800 organizations

that provided content mobilized across 27 countries, enabled and motivated local

institutions and their staff to participate in Europeana by enhancing skills and expertise of

key staff involved in the project.

EuropeanaLocal also had a great impact on Europeana strategy and awareness,

documentation and guidelines, workflows and on tools and support. For example,

EuropeanaLocal promoted aggregation, provided information systems and standards in

use, helped in improving the Europeana Semantic Elements (ESE) scheme, evolved the

Europeana Data Agreements, first tested and provided feedback in tools like the ESE

XML Schema validations. Additionally, EuropeanaLocal partners benefited by learning

how to install OAI-PMH repositories, better understanding the importance of metadata

and its impact on search results, networking themselves, tuning harvesting procedures

(Rowlatt et al., 2011). Part of the content that provided to Europeana via EuropeanaLocal

project came from Greek cultural organizations that built interoperable repositories as a

result of participating in this state of the art network.

In conclusion, even today (March 2014) two years after the end of the EuropeanaLocal

project, the network contributed 26% of the total of Europeana content. Technical and

interoperability challenges were overcome, the network has made tremendous progress in

content aggregation and the European aggregators’ infrastructure was enhanced.

However, long-term systemic problems such as financial problems and availability of

qualified staff remained (Rowlatt et al., 2011). It is worth noting that currently more

content is delivered to Europeana service not only from completed projects like

EuropeanaLocal but also from ongoing projects and initiatives.

In Greece, the diversity of content, skills, repositories, and infrastructure implies practical

aggregation problems. Academic libraries and the Hellenic National Documentation

Centre (NDC, EKT in Greek) aggregate their repositories content through the

openarchives.gr service, which is the Greek digital libraries search engine.. The engine

was developed one of the authors of this paper (Banos) as a free-lance service and is now

maintained by NDC. The openarchives.gr has 430,443 records from 64 repositories using

mainly simple Dublin Core (DC). Greek cultural organization did not make any

aggregation progress until the EuropeanaLocal project (2008-2011). The usefulness of

the software tools described below, such as the “Hellenic Aggregator” implemented in

2010 by the Veria Central Public Library (2010), the “Open Archives Engine” (Banos,

2009), the “oai.pmh validator” (Banos, 2011) helped the content providers to build

interoperable repositories and allowed them to provide their content in Europeana.

This support was both in technical issues and in tackling metadata compatibility

problems. For example, most repositories that participated in the openarchives.gr search

engine have implemented simple DC. The ESE schema (The Europeana Office, 2012)

needs more elements like the type of content, divided into text, image and video, and

other specific data elements. The content providers were helped technically by the Greek

EuropeanaLocal team in batch importing of the ESE metadata fields and values. For

example, the “DSpace plugin for ESE” (Banos, 2010), developed by the Veria Central

Public Library (VCPL) and the NDC (Houssos et al., 2011), was a useful tool for batch

importing.

If we take into account that according to the openarchives.gr the digital content in Greece

that is provided mostly by the academic and research sector is 430,443 records, the

136,223 records that the Hellenic Aggregator (HA) provides to Europeana is of

significant importance . About one-fifth (1/5) of the Greek digital content and almost all

the cultural heritage Greek digital content is harvested by the HA (Garoufallou et al.,

2013).

The first step in the process is to use the Europeana XML Namespace

http://europeana.eu/schemas/ese/ and augment existing systems’ configuration in order to

support the additional ESE elements. After implementing ESE support, the repository has

to be populated with the appropriate metadata values. This task can be either performed

manually through the appropriate user interface of each digital library or automatically by

using special software tools developed for this purpose.

Except from modern digital repository platforms, there are also numerous digital libraries

built with older or closed source technologies or legacy software which do not support

OAI-PMH or any other form of automatic metadata exchange. In these cases, special

techniques can be applied in order to extract metadata through plain HTTP requests, for

example the DEiXTo tool (Ntonas and Kokkoras, 2007) for extracting structured

metadata out of plain web pages. However, a mechanism is required to provide the

extracted data to clients (e.g. aggregators like Europeana) through the OAI-PMH

protocol.

This paper builds on previous work on enhanced OAI-PMH services for Europeana

(Houssos et al., 2011). It analyses a toolset for owners of data collections that need to

http://europeana.eu/schemas/ese/

provide metadata records to third parties and in particular Europeana. The toolset aims to

assist with common challenges in this process such as non OAI-PMH compliant legacy

systems, difficulties in implementing schema mappings, lack of support for sophisticated

selective harvesting. Focus is placed on the ability to address a variety of cases regarding

the maturity level of existing infrastructures for data providers and thus the applicability

of the proposed solution to heterogeneous environments.

The structure of the rest of the present text is as follows: Section 2 describes the

advanced harvesting requirements addressed by our solution and the motivation based on

practical needs of data providers. Section 3 presents related work and section 4 elaborates

on the actual solution. Section 5 describes the application of the proposed approach in

real use cases, while the last section of the article provides summary, conclusions and

plans for further work.

2 The Case for Enhanced OAI-PMH Compliant Data Providers

The ubiquitous OAI-PMH protocol provides an interoperability framework based on

metadata harvesting. Two types of entities exist in a typical OAI-PMH interaction: the

data provider that exposes metadata to interested clients and the service provider that

offers value-added services on top of metadata collected from data providers.

A major category of OAI-PMH service providers are aggregators, providing unified

search and browse functionality as well as the foundation and infrastructure for advanced

value-added services that become particularly meaningful when provided over content of

substantial size. A number of important aggregators with international coverage and

diverse scope have entered the scene in the last few years. Distinctive examples are

Europeana, the European digital heritage gateway, DRIVER and OpenAIRE (repositories

of peer-reviewed scientific publications) and DART Europe (European portal to research

theses and dissertations).

Compatibility with aggregators is nowadays a sine qua non pre-requisite for repositories,

since it provides increased visibility, enables content re-use and allows participation of

individual collections to the evolving global ecosystem of interoperable digital libraries.

In this context, it is becoming an increasingly common requirement for repositories to

provide for retrieval by an aggregator only a subset of the metadata records it contains,

essentially enabling selective harvesting. This may be needed for various reasons; certain

indicative use cases include the following:

 The aggregator collects only records that meet specific criteria concerning IPR,

copyright and open access:

o Records are included in the harvesting set only when there is a freely

accessible digital item (eg full text articles, books, etc.). Such policies are

followed by Europeana, DRIVER, OpenAIRE and DART Europe.

o Only metadata records which are themselves freely available for various

uses, ideally through appropriate licensing (e.g. Creative Commons). This is

required, for example, by Europeana.

 Thematic aggregators collect only records for content in specific subject areas, while

individual repositories can be interdisciplinary. Such is the case with the VOA3R
1

aggregator on Agriculture and Aquaculture. Europeana can be also considered an

analogous example, since in initial stages of development concentrates on collecting

mainly cultural heritage content (e.g. peer-reviewed journal articles are not

included).

 The aggregator collects only records for content of a specific type (e.g. theses, like

DART Europe), while individual repositories may contain different types.

The above indicate the complexity of supporting selective harvesting. This requirement

becomes more difficult to achieve when you consider that a repository is likely to provide

records to more than one aggregators, each with different requirements. Typically, OAI-

PMH sets are implemented within repository platforms in a static fashion, through the

creation of one set per individual collection in the repository. This approach is clearly not

sufficient because, as is evident from the above examples, the desired sets to harvest may

contain records spread over different collections. For practical needs to be satisfied and

capabilities provided by the OAI-PMH sets specifications to be fully exploited, more

sophisticated mechanisms are required, for example “virtual” sets that are dynamically

formed per request based on specific conditions – a solution perfectly compatible with

OAI-PMH.

Another important aspect and use case of selective harvesting is the retrieval of records

from systems that are not compliant with OAI-PMH. These might include legacy systems

like custom, non-standard databases, bibliographic catalogs of Integrated Library

Systems connected with the corresponding digital material, etc. A common case is that

such systems contain an array of diverse records, many of them not relevant for particular

aggregators. Therefore, filtering needs to be applied, possibly according to complex

criteria with a local, collection-dependent character. Crucial aspects for the success of

this task are the adoption of a systematic way of implementing and injecting into the

harvesting logic the filtering functionality, as well as repeatability of this procedure that

enables periodic updates of metadata in the aggregator that reflect changes of records

within the source systems. It is worth noting that the optimal option for content providers

of this kind would be to provide their digital content through a repository platform, so

that a holistic, standards-compliant solution is applied for the management of their digital

material and metadata, enabling advanced services such as digital files preservation,

curation, persistent identification, full-text indexing, etc.; however, this might not be

feasible in the near term (e.g. due to lack of resources).

Addressing the above requirements and issues constitute the main aims of the system and

approach presented in this paper, elaborated in Section 4.

3 Related Work

Mazurek et al. (2009), present the idea, role and benefits of a selective harvesting

extension of the OAI-PMH protocol, developed and applied in Polish digital libraries in

1 VOA3R EU project, available at: www.voa3r.eu (accessed 8 March 2014).

http://www.voa3r.eu/

frame of the ENRICH project. Specifically, they describe the OAI-PMH protocol

extension developed by the Poznan Supercomputing and Networking Center, which

allows harvesting of resources based on a search query specified in the Contextual Query

Language. This selective harvesting extension is being used by the Polish national

aggregator, which enables extended selective harvesting at the national level. It is notable

that in this approach filtering criteria are specified directly from the side of the

aggregator.

The concept, implementation and practical application of the OAI-PMH protocol

extension is also presented at the Mazurek et al. (2005) JCDL 2009 poster.

Finally, Sanderson et al. (2005) briefly contrast the information retrieval protocols

SRW/U (the Search/Retrieve Web service) and OAI (Open Archives Initiative), their

aims and approaches, and then, they describe ways in which these protocols have been or

may be usefully co-implemented.

A common limitation of the aforementioned approaches is that data is retrieved from data

sources through queries in standard query languages like CQL. In practical situations it is

frequently the case that such queries cannot fulfill the custom and complex selective

harvesting requirements for data providers, as demonstrated also in the use case of

paragraph 1. Furthermore, this solution requires a full-fledged query language to be

implemented against a variety of back-end systems / data sources, while the approach

proposed in this paper requires from data providers to implement only the specific bulk

data loaders and filters that are necessary / useful in their particular case.

The University of Minho has developed an OAI Extended AddOn for DSpace (2011),

which enables selective harvesting through the incremental, piece-wise addition of

objects like filters in the OAI-PMH server. The solution is bound to DSpace and does not

support retrieval from legacy, non OAI-compliant sources, since, compared with our

approach, there is no abstraction neither of the data records nor the data loading and

output generation functionalities.

The preparation of Z39.50 sources for harvesting via the OAI-PMH protocol is addressed

by the European Library in the TELplus project (Freire and Reis, 2009) in a thorough

manner with many practical examples and considerations. This work, concerning a

particular practical aspect of high importance for a specific case of data source but not a

general framework, is very useful to take into account in the harvesting of Z39.50 sources

with our mechanism.

4 An Innovative Approach to Creating OAI-PMH Data Providers

The main idea of our approach is to create a complete toolset for data providers that

enables them to expose their information via an enhanced OAI-PMH server, featuring

advanced capabilities related to the specification of mapping between input and output

metadata formats, implementation of the required data transformation and selective

harvesting. The toolset is designed to work even in cases where the infrastructure of the

data provider is very minimal, for example there is no OAI-PMH compliant repository

and no significant information technology (IT) human resources to implement the full

workflow of transformations. These capabilities are the following:

 A simple, declarative way of expressing mappings between input and output formats,

covering the most common cases of transformations between metadata schemas. The

mappings are specified in XML configuration files, outside the source code of the

system, so they can be edited by non-IT personnel (e.g. metadata experts in the

library).

 Modularisation of the steps involved in transforming data and providing it through

OAI-PMH. The overall workflow is divided into discrete pieces that can be

developed independently of each other. Every piece can be reused in various data

transformations. Each data transformation is a workflow that can be possibly built

out of a set of existing components. If specialized, not already available functionality

is needed, it can be smoothly added to the workflow as an extension, developed by

IT personnel.

 Definition of dynamic, “virtual” OAI-PMH sets, spanning various repository

collections (e.g. “records with items licensed under Creative-Commons-Zero”,

“records of language Greek”).

To achieve the above, we have designed according to these principles and developed a

modular enhanced OAI-PMH server that has been successfully employed in real-life

systems for the following use cases: (a) Introduction of advanced selective harvesting

functionality in OAI-PMH–compliant repositories and (b) implementation of OAI-PMH

data providers over data sources that do not support OAI-PMH such as Z39.50-compliant

bibliographic catalogs and even plain XML exports of metadata records. A key

component of the enhanced OAI-PMH server is an autonomous library called the Biblio-

Transformation-Engine (BTE), which we developed and utilized in this work.

The rest of this chapter is structured as follows: First, we describe the BTE architecture

and the workflows it supports, then we elaborate on features of our solution concerning

metadata abstractions and specification and implementation of schema mappings. Finally,

a report on two distinct real-life use cases is provided.

4.1 The Biblio Transformation Engine (BTE)

The existing data sources are quite heterogeneous, adopting a variety of metadata

schemas and syntaxes, and different ways of accessing them. Data may not necessarily be

in XML syntax, and may be provided by non standard APIs. Different steps (including

conversions, filtering, enrichment, etc) are needed to convert them to a common format,

that is required in order to store them in the service provider and build services on top of

them. Furthermore, it may be appropriate to add specific information, such as constant

values, to all records of a collection, if these values are omitted in the explicit metadata

because they are obvious to the user of the collection, but they need to be present when

the records are part of a larger set of collections. For example, the records for the

Parthenon Frieze may not mention Parthenon or Acropolis anywhere, but these

terms/labels should be added when mixed with other records.

The BTE
2
 (Stamatis et al., 2012) is a programmatic framework for the implementation of

data transformation workflows covering these requirements. It allows the decoupling of

communication with third party data sources and sinks (e.g. loading and

exporting/exposing data) with the actual tasks that comprise the transformation.

Furthermore, it enables the decomposition of a transformation into a workflow consisting

of autonomous, modular pieces (transformation steps). This facilitates the continuous

evolution/re-definition of workflows to constantly changing data sources and the

development of fine-grained workflow extensions in a modular way. The engine is

written in Java and constitutes an independent component used in a modular fashion in

the proposed toolset. It has been utilised by EKT as an autonomous module for dozens of

transformations in real systems, for example for populating the digital repositories of

Greek public libraries (Sidhunata, 2011) with metadata from ILS catalogues. It is also

part of the core distribution of the DSpace repository platform since version 3.0
3
, utilized

as the basis for batch data import functionality.

Each BTE run consists of three distinct steps: data loading, transformation workflow and

output generation. Data is modelled as records. Using an abstraction for the record, BTE

allows the user to read data from a source in a specific format, modify values of specific

fields, filter out records that do not meet certain criteria, and finally produce output in a

possibly completely different format. The framework is built around abstractions for each

of these concepts and enables reuse of individual pieces across multiple transformations.

The architecture of the BTE is shown in Figure 1. The input and output abstractions are

the data loader and the output generator respectively. The data loader abstracts the

process of retrieving the input data from its source and parsing it into BTE records. It is

clear that a different data loader is needed for each type of input schema/format. A range

of data loaders have already been implemented for BTE and are publicly available for

reuse, including commonly used formats such as Dublin Core, MARCXML, BibTeX,

CSV, and protocols like Z39.50, OAI-PMH and more. The output of the data loading

procedure is a set containing all the records read from the input source.

Figure 1. Biblio transformation engine architecture.

2 https://github.com/EKT/Biblio-Transformation-Engine (accessed 8 March 2014).
3 DSpace: Digital Repository Platform, available at: http://www.dspace.org/ (accessed 8 March 2014).

https://github.com/EKT/Biblio-Transformation-Engine
http://www.dspace.org/

Similarly, the output generator interface provides methods for exporting records to a

specific format; thus, a separate output generator is required per format. A range of

output generators are available with BTE, such as Dublin Core, ESE, CSV, Excel,

DSpace XML import format and others. Besides formats, several output types are

available such as writing to files, directly saving output to a database, instantiating Java

objects or producing XML records to be used by another part of the application invoking

the BTE (e.g. an OAI-PMH data provider).

The transformation workflow is executed right after data loading and before output

generation. It consists of discrete processing steps of the following two types: Filters

determine whether an input record will make it to the output based on particular

conditions (e.g. record type must be “PhD thesis”). Modifiers can perform operations on

record fields and their values (e.g. add/remove/update field). Typical use cases for

modifiers are data normalization and cleaning tasks on data fields (e.g. normalization of

date values). An important innovation of the BTE is that the transformation steps operate

on data fields and are independent of the input metadata schemas. For example, the same

DateNormalizationModifier may process date data fields from MARC, Dublin Core or

MODS records, after some suitable XML configuration.

A critical component of any transformation is the implementation of the mapping

between the input and the output schemas and formats. The BTE provides a range of

choices for the incorporation of mapping logic in the system. Mapping can happen within

the data loader or the output generator, while a combination of approaches is also

possible (e.g. having the mapping implemented partially by the data loader and

complemented with certain Modifiers in the transformation workflow). We will elaborate

on mapping issues in Section 4.2.

Particularly useful in practical cases is the feature of BTE of incremental retrieval,

processing and export of records. Essentially, each of the data loading and the

transformation workflow phases can be repeatedly executed before certain conditions are

met. This is useful for example for enforcing and controlling gradual execution of

individual parts of the entire transformation, which might be necessary due to technical

limitations introduced by different components, for example like the following:

 “A maximum of 100 records can be retrieved from the Z39.50 data source per

request.”

 “A maximum of 10.000 records can be fed to the transformation workflow at a

time.”

 “Generation of output is meaningful only after a minimum of 1.000 processed

records is already available.”

 “A maximum of 20.000 records can be forwarded to the output generator at a time.”

In summary, implementing transformations with the BTE leads to three major benefits:

 Reuse of the same pieces of transformation logic across different transformations.

Reuse is specified in a straightforward manner in configuration files editable by

metadata experts. Therefore, if certain transformation components are already

available as parameterized data loaders, filters, modifiers or output generators in

BTE, they can be included to a specific new workflow, saving the effort to re-

develop them. The contents of the workflow and its parameters, for example schema

mappings, can be specified in XML files by non-IT personnel (e.g. metadata

librarians).

 Separation of concerns is achieved in development. For example, knowledge of the

specifics of MARC is not necessary for a developer to create a modifier that

performs some changes on an input MARC record.

 Metadata records can be incrementally retrieved, processed and exported. This

enables execution of workflows in environments where technical limitations apply,

for example due to resource-constrained infrastructure or restrictions on the

rate/volume of data access by external providers.

4.2 Metadata abstraction and schema mapping in the Biblio Transformation

Engine

As mentioned above, the BTE is built around abstractions for some basic concepts. The

central abstraction is that of the Record. A simple record is an immutable, read-only

object that maps strings, representing field names, to lists of values. The basic

functionality provided by the Record public interface is that of retrieving the values

corresponding to a given field name, e.g. getByName(“dc.title”). There are no practical

limitations for the string used for retrieval, for example it can be an entire XPath

expression. Records of any complexity and structure (flat, hierarchical, graphs of entities)

can be represented. There is also a mutable (read-write) record abstraction that provides

methods for modifying specific values, or even whole fields. We should note that the

mutable record is a sub-interface of record, and therefore can be used instead of a record

if this is needed. The current implementation of BTE provides two concrete

implementations for record: a MapRecord (mutable record) and an XPathRecord

(immutable record), but of course software developers using the BTE are free to define

their own solutions.

One of the design goals of the framework was to completely decouple the record

abstraction from the input and output format of the data. This means that the data loading

and the output generation procedures can be parameterized according to the specific

needs of each transformation.

The data flow in the BTE, depicted in Figure 2, can be described as follows:

The data loader reads records from their source and transforms them to BTE Record

instances. During the transformation workflow the BTE records are processed and

filtered and then they are forwarded to the output generator, which produces the output

records in the desired format. The mapping between the input and output schema may be

Figure2. Data flow in the BTE.

implemented in various places within the BTE, for example the data loader or the output

generator. Some, usually advanced, mapping logic may be also incorporated in modifiers

of the transformation workflow.

Simple mappings, defining a 1-1 or N-1 correspondence between input and output data

fields can be implemented in data loaders and output generator using generic logic. Such

mappings can be easily configured outside the application in XML files. Relevant

examples are provided in Section 5.

More complex mapping cases can be handled by adding suitable modifiers in the

transformation workflow; however, this requires software development by technical

personnel.

Often a mapping can be available as an XSLT. In this case, the XSLT can be executed as

part of the data loader or the output generator – depending on whether further processing

in the transformation workflow is needed and whether it can be performed more

effectively or easily to the input or output schema.

5 Enabling OAI-PMH-compliant harvesting of legacy Data Sources

Large volumes of valuable content are still hosted in systems that are not compliant with

OAI-PMH and thus providing them to aggregators like Europeana is a challenging task.

Of course, BTE itself is not able to serve OAI-PMH records, but it can be used in a lower

level of an OAI_PMH compliant server to do the transformation of the legacy records to

the OAI-PMH ones. In this section, we describe the mechanisms that we have used to

enable the OAI harvesting of legacy data sources using the BTE and two use cases that

were encountered during our work and have been addressed successfully with the

proposed toolset. It is worth noting that this approach makes the harvesting process

periodically repeatable even when the underlying data sources are not OAI-PMH

compatible. Selective harvesting is also possible when appropriate (e.g. harvesting of

predefined stes to the srouce repository is meaningful and/or the source records contain

information about their last update date).

5.1 BTE-enabled OAI-PMH server

Our first goal was to create an end-to-end solution for OAI-PMH based harvesting of

legacy data sources. These sources could be a spreadsheet of even a raw XML file or

whatever type someone could imagine as long as there is a programming API to load the

data in the system. An end-to-end solution means a programmatic interface that could be

used by the end user without caring about the OAI-PMH side of the system but only for

the way the records are loaded in the system and how they are mapped to the requested

output format/schema. The best way to achieve this was to implement a framework that

acts as a middleware layer between the OAI-PMH harvesting and the legacy data

sources. The middleware layer we have implemented has the aforementioned features

and we are going to describe its internal details in the following paragraphs.

OCLC (Online Computer Library Center) has already implemented a java-based OAI-

PMH server (namely OAI-CAT) with programmatic interface so as the users can extend

its functionality in order to provide their own functionality for the data loading and the

metadata crosswalking. We used OAI-CAT as starting point for our middleware layer. a

challenging next step was the procedure to embed the BTE functionality in this workflow

in order to exploit its capabilities of data loading, record filtering and modification and

output mapping. Moreover, we needed to expand the configuration options that OAI-

CAT provided to us and use the configuration capabilities that BTE offers via its Spring-

XML configuration.

The architecture of the implemented middleware solution is shown in Figure 3.

Figure 1. Architecture for OAI-PMH compliant harvesting of non OAI-PMH compliant sources.

At the very top, OAI-CAT handles the OAI requests. Some of them (i.e. Identify) can be

directly resolved by OAI-CAT. However, most of the supported OAI verbs (i.e.

ListRecords, ListIdentifiers), cannot be resolved by OAI-CAT itself and thus the

proposed middleware and BTE are utilized in order to feed the OAI responses with

appropriate data. Based on the configurations (both OAI-CAT and BTE XML ones) the

appropriate data loaders, filters and modifiers are executed and finally the BTE returns to

OAI-CAT the corresponding data. The wrapping of the record metadata within the OAI-

PMH response is performed by the middleware so the repository owner is only

responsible to provide crosswalks between the internal record representation and the

requested metadata prefix. The data loading stage can be carried out by the ready-made

data loaders (in many flavors) that are bundled with the BTE framework. Otherwise, the

repository owner is responsible to provide one and declare it in the configuration. The

shaded shapes in the figure correspond to components that might require

confiruation/extension by the framework’s in order for the OAI server to work properly.

The OAI-CAT configuration is based on a plain text file named “oicat.properties”. This is

mainly to handle the “Identify” response with static data about the data source. The heavy

configuration is done in the BTE’s Sping-XML configuration file. We mention some of

the capabilities of this configuration file and what the user can define within it.

1) The data loader that will be used to load records

<bean id="dataloader" class="gr.ekt.oai.DSpaceDataLoader"

scope="prototype"/>

The user specifies the data loader that will be used to load data in the BTE

workflow.

2) The BTE transformation workflow that will be used.

<bean id="defaultTransformationWorkflow"

 class="gr.ekt.bte.core.LinearWorkflow" scope="prototype">

 <property name="process">

 <list>

 <ref bean="fix-metadata-language-modifier"/>

 <ref bean="fix-language-modifier"/>

 <ref bean="field-renamer-modifier"/>

 …

 </list>

 </property>

</bean>

This is the default transformation workflow (modifiers) that will be run when

records are requested by the OAI server. Keep in mind that the user can specify

multiple transformation workflows based on the metadata prefix that will be

given in the requested URL. This is very useful when different modifiers need to

be applied when harvesters request records in the default oai_dc schema and

another metadata schema that this data source supports.

3) The metadata formats that the OAI server supports.

<bean id="crosswalks" class="java.util.HashMap">

 <constructor-arg>

 <map>

 <entry key="oai_dc" value-ref="oaidc-crosswalk"/>

 <entry key="unimarc" value-ref="unimarc-

crosswalk"/>

 </map>

 </constructor-arg>

</bean>

<bean id="oaidc-crosswalk"

 class="gr.ekt.oai.OAIDCCrosswalk">

 <constructor-arg>

 <value>

 http://www.openarchives.org/OAI/2.0/oai_dc/

 http://www.openarchives.org/OAI/2.0/oai_dc.xsd

 </value>

 </constructor-arg>

</bean>

<bean id="unimarc-crosswalk"

 class="gr.ekt.oai.UnimarcCrosswalk">

 <constructor-arg>

 <value>

 http://www.loc.gov/MARC21/slim/

http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd

 </value>

 </constructor-arg>

</bean>

Within the first bean, the user declares the list of metadata formats that are

supported by this OAI server. The class implementation of the corresponding

crosswalks is left to the user which is the only that knows the mapping between

the records that we loaded by data loader and the requested metadata format by

OAI.

4) Declaration of virtual sets

<bean id="virtual-sets" class="java.util.ArrayList">

 <constructor-arg>

 <list>

 <map>

 <entry key="name" value="dart" />

 <entry key="setSpec" value="dart" />

http://www.openarchives.org/OAI/2.0/oai_dc/
http://www.openarchives.org/OAI/2.0/oai_dc.xsd
http://www.loc.gov/MARC21/slim/
http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd

 <entry key="filters" value-ref="dart-filters"/>

 </map>

 </list>

 </constructor-arg>

</bean>

<bean id="dart-filters" class="java.util.ArrayList">

 <constructor-arg>

 <list>

 <ref bean="institution-filter"/>

 <ref bean="fulltext-filter"/>

 <ref bean="country-filter"/>

 </list>

 </constructor-arg>

</bean>

The configuration above declares a new virtual set named “dart” what can be used in the

OAI requests. The user is responsible to provide a list of BTE filters that apply when this

set is requested, since, in most case, a defines sets actually cuts records from the response

The aforementioned middleware can make OAI-PMH harvesting of legacy data sources

quite straightforward. This is due to the configuration capabilities provided by the BTE

as well as the nature of BTE workflow which can embed modifiers and filters by

providing just few lines of configuration XML code.

To proof check and validate the approach the easiness of OAI harvesting via the

implemented interface, we describe three systems with legacy data sources for which the

tool was used.

5.2 Harvesting from a Z39.50 data source

The first implementation concerned material that the Technical Chamber of Greece

(TEE) intended to contribute to Europeana, in particular collections that contain all their

current publishing work (TEE digital library), some historical editions (1932-1980), and

their multimedia content on engineers, buildings and posters. The descriptions of these

objects are stored in the TEE bibliographic catalog in the UNIMARC format, mixed with

descriptions without online objects, which are inappropriate for Europeana. Additionally,

their own content management system provides the above 5 collections together with

other content, from their own regional subdivisions, their journal subscriptions, etc. The

right selection or records has to be performed before they become available to

Europeana. At the system level, the records could be made available through a Z39.50

programmatic interface.

In this use case, based on the enhanced OAI-PMH middleware mentioned before, we

have just developed a MARC/Z39.40 data loader capable of reading records from the

Z39.50 server of TEE and a crosswalk to transform these MARC records to the ESE

metadata schema of Europeana.

Data loading was achieved using the JZKit open source library
4
 and the transforming of

loades records to meaningful records in BTE was based on the MARC4J tool
5
. The

transformation has created MARCXMLRecord objects (MARCXMLRecord is an

abstraction for MARC records following the BTE Record interface).

The second thing that we had to implement was the crosswalk to provide the Records of

BTE in the ESE metadata format of Europeana. A new crosswalk was written and its

class was declared in the configuration file. The mapping of the internal fields that

MARCXMLRecord uses to the ESE schema is done via the configuration file.

More or less, the aforementioned configuration did the work, however, an important

practical aspect concerned the controlled retrieval from the Z39.50 server, which was

performed in chucks of maximum 100 records due to limited resources on the side of the

TEE server. This issue could be resolved by BTE since data loading can keep up until the

requested number of records is returned from the legacy data source.

The retrieval of the desired sets of records and the de-duplication were not possible using

only queries (e.g. PQF or CQL) to the Z39.50 server, since the criteria for filtering where

quite custom and complex, (e.g. availability of full-text that was specified in a non-

standard way in the metadata records, filtering of records that are present in the database

but are not published by the Technical Chamber of Greece, etc.). We implemented the set

support using virtual filters and custom filters.

Furthermore, modifiers were injected in the BTE transformation workflow to transform

records to the ESE format and perform various modifications to field values (e.g.

normalisation, adjusting value encoding to Europeana standards).

It is worth noting that development of filters and modifiers did not require any

knowledge of the MARC and Z39.50 standards and the structure of MARC records.

The metadata records from the TEE collections that could be finally contributed to

Europeana are approximately 6800. The most frequent metadata field was dc:subject,

which was usually repeated at least 4 times, and the 28284 subjects that appear, contain

4669 unique values. The lengthiest field is dc:title with 18 words on average and follows

dc:description and dcterms:isPartOf with 15, while the dcterms:isPartOf is used in the

97% of the records, and most fields are included once on each record.

5.3 Harvesting from a legacy database

Another case was that of the material of the Parthenon Frieze that has been digitized and

scientifically documented by the Information and Education Department of the Acropolis

Restoration Service (Hellenic Ministry of Culture). Initially, this material was published

via an interactive web application implemented with Flash technology
6
. This application

stored information in a custom relational database and did not provide an OAI-PMH

4 http://www.k-int.com/jzkit
5 http://marc4j.tigris.org/
6 http://www.parthenonfrieze.gr

compliant programmatic interface. The OAI middleware that is mentioned in this paper

was employed for the development of a wrapper to expose the database contents as

standard metadata records over OAI-PMH. A configurable data loader (SQLDataLoader)

was implemented for retrieving information from relational databases and was used, with

the appropriate parameters, for fetching data from the legacy database server. The BTE

records created from this process did not resemble any standard metadata format; they

had labels similar to the field names in the database. A couple of modifiers were needed

to normalizing certain data values in several fields and insert into each record additional

Europeana-specific data fields. Finally, an output crosswalk was developed that produced

records in the Europeana Semantic Elements schema. The mapping from the database

schema to ESE was possible to be defined as an XML specification outside the source

code of the output generator.

The source database and the transformation elements needed for this use case are detailed

in the following.

The relational database describes the 119 stone blocks of the Parthenon Frieze. The main

tables holding stone block metadata and their structure are the following (simplified for

economy of presentation):

Table: BlockInfo

(each row

represents a block)

Attributes

Bid

Title

Text

Image

Startposition

Endposition

Side

Museum

Table: Subjects

(each row

represents a subject)

Attributes

Sid

Bid

Subject

Each row in the first table holds information about the blocks in the Parthenon Frieze

whereas the second one holds the subjects of the representations depicted in the block.

The SQLDataLoader is a data loader that fetches one whole table and creates one record

per row, based on a given mapping. For instance the configuration below, instructs the

data loader to fill the field "id" of the record with the data found in the column "bid" of

the database table. The “fieldMap” property holds the mapping, which is expressed in

XML and does not need software development skills for its definition.

<bean id="friezeLoader"

 class="gr.ekt.bteio.loaders.SQLDataLoader">

 <property name="db_connection"

 value="jdbc:mysql://example.server.com/parthenonfrieze_db"/>

 <property name="credentials"

 value="src/main/resources/credentials.txt"/>

 <property name="tableName" value="BlockInfo"/>

 <property name="fieldMap">

 <map>

 <entry key="bid" value="id" />

 <entry key="title" value="ttl" />

 <entry key="text" value="txt" />

 <entry key="image" value="contents" />

 <entry key="startposition" value="start_pos" />

 <entry key="endposition" value="end_pos" />

 <entry key="side" value="side" />

 <entry key="museum" value="museum" />

 </map>

 </property>

</bean>

After the record is created it is passed to the workflow for further processing. Four types

of modifiers (SubjectModifier, ValueAddModifier, TitleModifier, LocationModifier) are

applied to each record, as described below.

The subject modifier needs to get data from the database as well. In fact it reads the

values from the table "Subjects" and adds a "subject" field in each stone block record.

<bean name="subjectModifier"

class="gr.ekt.frieze.modifiers.SubjectModifier">

 <property name="db_connection"

 value="jdbc:mysql://example.server.com/parthenonfrieze_db"/>

 <property name="credentials"

 value="src/main/resources/credentials.txt"/>

 <property name="tableName" value="Subjects"/>

 <property name="fieldMap">

 <map>

 <entry key="subject" value="subject"/>

 </map>

 </property>

</bean>

The "ValueAddModifier" is maybe the simplest modifier that can be written. It inserts a

constant value to a given field. For example the "typeModifier" inserts the value

"Sculpture" to the field "type". This single modifier, with the appropriate configuration,

is used to set the values of five different fields (type, format, medium, source,

dataProvider, europeana.type) in the stone block metadata. The reason for the simplicity

of this case is the fact that all stone blocks in the Parthenon Frieze has exactly the same

value for all these fields.

<bean name="valueAddModifier"

 class="gr.ekt.frieze.modifiers.ValueAddModifier">

 <property name="fieldMap">

 <map>

 <entry key="type" value="Sculpture"/>

 <entry key="" value="image/jpg"/>

 <entry key="medium" value="Pentelic marble"/>

 <entry key="source" value="Acropolis Restoration Service"/>

 <entry key="europeana.dataProvider" value="National

 Documentation Centre (EKT)"/>

 <entry key="europeana.type" value="IMAGE"/>

 </map>

 </property>

</bean>

The "titleModifier" and the "locationModifier" concatenate data from the record with

constant string values in order to produce formatted values.

<bean name="titleModifier"

class="gr.ekt.frieze.modifiers.TitleModifier"/>

<bean name="locationModifier"

class="gr.ekt.frieze.modifiers.LocationModifier"/>

All the aforementioned modifiers where incorporated in the BTE workflow process by

just adding them in the Spring XML configuration file as follows:

<bean id="defaultTransformationWorkflow"

 class="gr.ekt.bte.core.LinearWorkflow" scope="prototype">

 <property name="process">

 <list>

 <ref bean="subjectModifier"/>

 <ref bean="valueAddModifier"/>

 <ref bean="titleModifier"/>

 <ref bean="locationModifier"/>

 </list>

 </property>

</bean>

Finally, since only the ESE output format should be supported, the corresponding BTE

configuration is set to support only the ESE output crosswalk.

<bean id="crosswalks" class="java.util.HashMap">

 <constructor-arg>

 <map>

 <entry key="ese" value-ref="ese-crosswalk"/>

 </map>

 </constructor-arg>

</bean>

<bean id="ese-crosswalk"

 class="gr.ekt.oai.ESECrosswalk">

 <constructor-arg>

 <value>

 http://www.europeana.eu/schemas/ese/

 http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd

 </value>

 </constructor-arg>

</bean>

The ESE output crosswalk uses the data in the record to produce files suitable for

ingestion to European. A mapping between the internal BTE record and the OAI output is

given in the following listing (which is part of the Sprign XML configuration):

<bean id="dspace_output_spec"

 class="gr.ekt.bteio.specs.ESEOutputSpec">

 <property name="prefixDir" value="output"/>

 <property name="padding" value="5"/>

</bean>

<bean name="eseGenerator"

class="gr.ekt.bteio.generators.ESEOutputGenerator">

 <constructor-arg>

 <map>

 <entry value="title" key="dc.title" />

 <entry value="text" key="dc.description" />

 <entry value="ttl" key="dc.identifier" />

 <entry value="sideExt" key="dcterms.isPartOf" />

 <entry value="medium" key="dcterms:medium " />

 <entry value="format" key="dcterms:hasFormat" />

 <entry value="subject" key="dc.subject" />

 <entry value="type" key="ese.type" />

 <entry value="source" key="ese.provider" />

 </map>

 </constructor-arg>

</bean>

In a second phase of development, a public DSpace repository was developed for the

Parthenon Frieze material
7
 and therefore an OAI-PMH server was available at the source

system to expose the metadata to Europeana. The BTE was used in that case both for the

initial loading and transformation of the legacy database contents to DSpace metadata

records in Qualified Dublin Core, while the proposed enhanced OAI-PMH toolset was

used to implement the mapping of the DSpace metadata to the Europeana Semantic

Elements schema.

7 http://repository.parthenonfrieze.gr

5.4 Harvesting from a raw XML file

The final use case of the BTE-enabled OAI-PMH server was that of the Hellenic

Statistical Authority (EL.STAT). The ELSTAT digital library
8
 is hosted by a custom-

made software package that does not offer OAI-PMH support. This software is able of

exporting an XML document including all the records described in the MODS metadata

format. Given this XML file (which is periodically updated at a specific network

location), we were instructed to provide the records via the OAI-PMH protocol.

Using the BTE-enabled OAI-PMH server this was a trivial procedure and it is described

in the following paragraphs.

At the very beginning, a pre-processing step of an XSLT transformation took place to

transform the MODS XML file to Dublin Core format. This was judged to be necessary

since a DC output crosswalk was already implemented for other projects, however, the

initial MODS XML file could be used as an input for the BTE.

Given the DC XML file, an XML dataloader was developed in order to load the records

in the system. The corresponding Spring XML follows:

<bean id="dataloader"

 class="gr.ekt.enhancedoaiserver.bte.ElstatXMLDataLoader"

 scope="prototype">

 <constructor-arg value="books_oai.xml"></constructor-arg>

</bean>

The specified DataLoader created a specific type of BTE Records that each one holds an

entire XML document as its primitive data. However, the OAI-PMH protocol specifies

that each record must be associated with a timestamp to declare the creation or update

date of the item. To overcome this issue, we added a modifier that adds a datestamp to

each record (based on the date that the items where initially stored in our system):

<bean id="defaultTransformationWorkflow"

 class="gr.ekt.bte.core.LinearWorkflow" scope="prototype">

 <property name="process">

 <list>

 <ref bean="datestamp-modifier"/>

 </list>

 </property>

</bean>

<bean id="datestamp-modifier"

 class="gr.ekt.enhancedoaiserver.bte.ElstatDatestampModifier">

 <property name="datestamp" value="2014-01-31T09:56:58Z">

 </property>

</bean>

8 http://dlib.statistics.gr/

Finally, regarding the output crosswalk to OAI_DC, we developed a new crosswalk

which uses the XML document stored in each record in order to product the OAI output:

<bean id="crosswalks" class="java.util.HashMap">

 <constructor-arg>

 <map>

 <entry key="oai_dc" value-ref=" oaidc-crosswalk"/>

 </map>

 </constructor-arg>

</bean>

<bean id=" oaidc-crosswalk"

 class="gr.ekt.enhancedoaiserver.bte.ElstatOAIDCCrosswalk">

 <constructor-arg>

 <value>http://www.openarchives.org/OAI/2.0/oai_dc/

 http://www.openarchives.org/OAI/2.0/oai_dc.xsd</value>

 </constructor-arg>

</bean>

As far as the sets that will be exposed via the OAI-PMH protocol, since there are no

native sets specified by “EL.STAT.”, we can instruct BTE-enabled OAI server to provide

one virtual sets of books:

<bean id="virtual-sets" class="java.util.ArrayList">

 <constructor-arg>

 <list>

 <map>

 <entry key="name" value="Book" />

 <entry key="setSpec" value="Book" />

 <entry key="filters" value-ref="book-set-filters"/>

 </map>

 </list>

 </constructor-arg>

</bean>

<bean id="book-set-filters" class="java.util.ArrayList">

 <constructor-arg>

 <list>

 </list>

 </constructor-arg>

</bean>

As can be seen, no filters are defines for the specific sets since we wanted all the records

to be available under the “books” set.

As a result of the aforementioned work, the ELSTAT digital library material has been

successfully incorporated in the openarchives.gr aggregator at the metadata level

(http://openarchives.gr/organisations/view/54).

6 Summary and Future Work

Small organizations need tools that can serve them to perform metadata transformation

tasks, without re-implementing functionality that others also implement or need, to

participate to aggregator efforts easier and more flexible, according to their own

collection setup and requirements.

They need tools that only accept an easy configuration, without requiring programming

skills, to convert metadata to specific syntax and schema, to select records according to

predefined rules, to enrich the metadata and to provide the desired metadata elements.

We designed and implemented such tools for efficient OAI-PMH exchange of metadata.

With the proposed approach, our OAI-PMH server can apply advanced logic for selective

harvesting such as transformations among different formats and schemata, filtering and

updating of data. Content providers can define dynamic sets to convert their metadataand

the corresponding schema mappings, without altering their collections and schemas.

Even when their software does not support OAI-PMH, they can use our modular

implementation that enables retrieval of metadata records from a variety of non OAI-

PMH sources.

We presented here three cases that the tools were applied, in retrieving data from a

library catalogue through the Z39.50 protocol, retrieving data from a legacy database and

exposing OAI-PMH records out of a raw XML export. All these systems were not

designed to provide data using the OAI-PMH protocol, and needed to be redesigned to

provide the desired records to any metadata aggregator.

Further work is being planned along various paths. The case studies provided clear

indications that the proposed approach leads to very good performance both in terms of

harvesting speed and consumption of computing and memory resources. A detailed

investigation of performance issues is an interesting extension of the present work. Other

plans include to make an OAI-PMH proxy, that can apply the configured operations over

a legacy OAP-PMH server, the incorporation of the developed modular tools into various

open source OAI-PMH servers, as well as the application of the proposed approach with

more content providers and a systematic user study to capture their experiences with the

tools in terms of utility and ease of configuration and extension.

References

Banos, V. (2009), “Open Archives Engine software”, available at:

http://openarchivesengine.com (accessed 11 February 2014).

Banos, V. (2010), “DSpace plugin for Europeana Semantic Elements (ESE)”, available

at: http://vbanos.gr?p=189 (accessed 11 February 2014).

Banos, V. (2011), “Open archives initiative protocol for metadata harvesting validation

and data extraction tool”, available at: http://oaipmh.com (accessed 11 February 2014).

Devarakonda, R., Palanisamy, G., Green, J. M. and Wilson, B. E. (2011), “Data sharing

and retrieval using OAI-PMH”, Earth Science Informatics, Vol. 4 No. 1, pp.1-5.

http://openarchivesengine.com/
http://oaipmh.com/

EuropeanaLocal (2008), “EuropeanaLocal”, available at: http://www.europeanalocal.eu/

(accessed 11 February 2014).

Freire, N. and Reis, D. (2009), “Guidelines for preparing a Z39.50/SRU target to enable

metadata harvesting”, Deliverable D-2.3, project TELplus: The European Library Plus,

project reference: ECP-2006-DILI-510003.

Garoufallou, E. and Asderi, S. (2010), “Digital libraries and the digital working

environment: what is their effect on library staff for sharing their knowledge?”, in

Katsirikou, A. and Skiadas, C. (Ed.), New Trends in Qualitative and Quantitative

Methods in Libraries, 2
nd

 Qualitative and Quantitative Methods in Libraries.

Proceedings of the International Conference Chania, Greece, 2010, World Scientific, pp.

359-365.

Garoufallou, E., Asderi S. and Koutsomiha, D. (2010), “Digital libraries as knowledge

management systems’, in International Scientific Conference, eRA 5: The SynEnergy

Forum: The Conference for International Synergy in Energy, Environment, Tourism and

contribution of Information Technology in Science, Economy, Society and Education,

Piraeus, Greece, September 15-18, 2010.

Garoufallou, E., Banos, V. and Koulouris, A. (2013), “Solving aggregation problems of

Greek cultural and educational repositories in the framework of Europeana”,

International Journal of Metadata, Semantics and Ontologies (IJMSO), Vol. 8 No. 2, pp.

134-144.

Giannakopoulos, G, Kyriaki – Manesi, D and Zervos, S. (2012), “Approaching

information as an integrated field: educating information professionals”, in

Giannakopoulos, G.A and Sakas, D.P. (Ed.), Integrated Information. International

Conference on Integrated Information, Kos, Greece, September 29-October 3, 2011, I-

DAS, Piraeus Greece, pp. 128-131.

Konstantinou, N., Houssos, N. and Manta, A. (2014), “Exposing bibliographic

information as linked open data using standards-based mappings: methodology and

results”, Procedia Social and Behavioral Sciences.

Houssos, N., Stamatis, K., Banos, V., Kapidakis, S., Garoufallou, E. and Koulouris, A.

(2011), “Implementing enhanced OAI-PMH requirements for Europeana”, in Gradmann,

S. et al. (Ed.), Proceedings of the International Conference on Theory and Practice of

Digital Libraries (TPDL 2011), Berlin, Germany, September 25-29, 2011, Lectures Notes

in Computer Science (LNCS), Vol. 6966, pp. 396–407, Springer-Verlag. Berlin

Heidelberg, Vol. 6966, pp. 396-407.

IRN Research (2011), “Europeana – online visitor survey: research report”, available at:

http://pro.europeana.eu/c/document_library/get_file?uuid=334beac7-7fc2-4a4e-ba23-

4dcc1450382d&groupId=10602 (accessed 11 February 2014).

Koninklijke Bibliotheek (2009), “Europeana”, available at: http://www.europeana.eu

(accessed 11 February 2014).

http://www.europeanalocal.eu/
http://pro.europeana.eu/c/document_library/get_file?uuid=334beac7-7fc2-4a4e-ba23-4dcc1450382d&groupId=10602
http://pro.europeana.eu/c/document_library/get_file?uuid=334beac7-7fc2-4a4e-ba23-4dcc1450382d&groupId=10602
http://www.europeana.eu/

Koulouris, A., Garoufallou, E. and Banos, E. (2010), “Automated metadata harvesting

among Greek repositories in the framework of EuropeanaLocal: dealing with

interoperability”, in Katsitikou, A. and Skiadas, C. (Ed.), New Trends in Qualitative and

Quantitative Methods in Libraries, 2
nd

 Qualitative and Quantitative Methods in

Libraries, Proceedings of the International Conference on QQML 2010, Chania, Greece,

2010, World Scientific, pp. 331-337.

Mazurek, C., Mielnicki, M. and Werla, M. (2005), “Selective harvesting of regional

digital libraries and national metadata aggregators”, in 9th ACM/IEEE-CS Joint

Conference on Digital libraries (JCDL 2009), New York, pp. 429-430.

Mazurek, C., Mielnicki, M., Parkola, T. and Werla, M. (2009), “The role of selective

metadata harvesting in the virtual integration of distributed digital resources”, in

ENRICH Final Conference, pp. 27-31.

Ntonas, K. and Kokkoras, F. (2007), “DEiXTo”, available at: http://www.deixto.com

(accessed 8 March 2014).

Rowlatt, M., Davies, R. and Komen, L (2011), “EuropeanaLocal: it’s objectives,

activities and impact. Project presentation: results D1.11”, available at:

http://www.europeanalocal.eu/eng/Document-Library/Project-Deliverables (accessed 11

February 2014).

Sanderson, R., Young, J. and LeVan, R. (2005), “SRW/U with OAI: expected and

unexpected synergies”, D-Lib Magazine, Vol. 11 No. 2, available at:

http://www.dlib.org/dlib/february05/sanderson/02sanderson.html (accessed 8 March

2014).

Sidhunata, H. R., Croucher, J. and Frances, M. (2011), “Selective harvesting: creating

and ingesting custom OAI-PMH Sets, in eResearch Australasia Conference.

Stamatis, K, Konstantinou, N., Manta, A., Paschou, C. and Houssos, N. (2012), “Biblio-

transformation-engine: an open source framework and use cases in the digital libraries

domain”, in 7th International Conference on Open Repositories, Edinburgh, 2012.

The Europeana Office (2012), “Europeana semantic elements specifications v3.4.1”,

available at: http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-

c27c95396d57 (accessed 11 February 2014).

University of Minho (2011), “OAI Extended AddOn”, available at:

http://projecto.rcaap.pt/index.php/lang-en/consultar-recursos-de-

apoio/remository?func=fileinfo&id=337 (accessed 8 March 2014).

Vassilakaki, E. and Garoufallou, E. (2013), “Multilingual Digital Libraries: a review of

issues in system-centered and user-centered studies, information retrieval and user

behaviour”, International Information and Library Review, Vol. 45 No. 1-2, pp. 3-19.

Veria Central Public Library (2010), “Europeana Local Aggregator”, available at:

http://aggregator.libver.gr (accessed 11 February 2014).

http://www.deixto.com/
http://www.europeanalocal.eu/eng/Document-Library/Project-Deliverables
http://www.dlib.org/dlib/february05/sanderson/02sanderson.html
http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-c27c95396d57
http://pro.europeana.eu/documents/900548/dc80802e-6efb-4127-a98e-c27c95396d57
http://projecto.rcaap.pt/index.php/lang-en/consultar-recursos-de-apoio/remository?func=fileinfo&id=337
http://projecto.rcaap.pt/index.php/lang-en/consultar-recursos-de-apoio/remository?func=fileinfo&id=337
http://aggregator.libver.gr/

