

CFEngine 3.x
Large-scale configuration

mgmt.

P. Christeas, 2014
Ημέρες Συνεργασίας

Ε/ΕΛ-ΛΑΚ
EEN Hellas

How, Why?

My needs:
● Increasing number of

machines
● Pro-active monitoring
● Parallel deployment
● Repetitive

administration

CFEngine design:
● Scalability
● Promise theory
● Anomaly detection
● Change management
● Heterogenous adm.

IRC :)

CFEngine
(academic) concepts

● Mark Burgess, creator, original author,
prof. of Network and System Administration

● scientific approach, 90's
● Promise theory (declarative lang. of states)
● Change Management
● References, today's

usage

Community vs. Enterprize

Community edition:
● Core components: cf-agent, server, monitord
● Design Center (console-only)

Enterprise edition:
● Knowledge management
● Web-interface
● Statistics, Graphs, feedback

Core components

● Written in C, standalone binaries (as root)
● cf-agent
● cf-serverd
● cf-monitord
● cf-execd, cf-key, cf-runagent, cf-promises

● Masterfiles, input files
● /var/cfengine/...
● git (down to policy server)

Policy flow

Promise theory, syntax

● Promises, declarative language
● Bundles (CFEngine 3)
● classes
● variables, actions (time-based, constraints)

bundle agent hello_world
{
 reports:
 any::
 "Hello World! I am $(sys.fqhost) and it is $(sys.date)"
 comment => "Prints a message, including hostname";
}

Agent promises

● files
● copy
● check
● delete
● perms

● commands
● methods
● processes

● packages
● RPMs, DEBs etc.

● services
● storage

(disk space, %)
● reports (logging)
● databases (?)

A file promise

 files:
 Mageia::
 "/etc/ntp/step-tickers"
 handle=> "ntp_setup_tickers",
 copy_from=> remote_cp("$(def.dir_masterfiles)/Mageia/
 ntp-step-tickers", "$(sys.policy_hub)"),
 perms=> m("go+r"),
 action=>if_elapsed_day;

Result?

● Many (different) machines on “auto pilot”
● 4 different setups, desktop machines!
● Alerts + rich forensics
● Tamper-proof
● Provisioning
● Continuous convergence to peace-of-mind

Zoom-out

(enterprise edition only?)
● Virtual environments
● Testing (Jenkins)
● Deployment, Risk management
● Multiple “branch” configurations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

